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Abstract

Introduction Prolonged Length of Stay (LOS) in ED (Emergency Department) has been associated with poor clinical
outcomes. Prediction of ED LOS may help optimize resource utilization, clinical management, and benchmarking. This
study aims to systematically review models for predicting ED LOS and to assess the reporting and methodological
quality about these models.

Methods The online database PubMed, Scopus, and Web of Science (10 Sep 2023) was searched for English lan-
guage articles that reported prediction models of LOS in ED. Identified titles and abstracts were independently
screened by two reviewers. All original papers describing either development (with or without internal validation)
or external validation of a prediction model for LOS in ED were included.

Results Of 12,193 uniquely identified articles, 34 studies were included (29 describe the development of new models
and five describe the validation of existing models). Different statistical and machine learning methods were applied
to the papers. On the 39-point reporting score and 11-point methodological quality score, the highest reporting
scores for development and validation studies were 39 and 8, respectively.

Conclusion Various studies on prediction models for ED LOS were published but they are fairly heterogeneous

and suffer from methodological and reporting issues. Model development studies were associated with a poor

to a fair level of methodological quality in terms of the predictor selection approach, the sample size, reproducibility
of the results, missing imputation technique, and avoiding dichotomizing continuous variables. Moreover, it is recom-
mended that future investigators use the confirmed checklist to improve the quality of reporting.
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Introduction

Overcrowding in the Emergency Department (ED) is an
important worldwide problem [1-3] and it has received
considerable international attention in recent years [4—8].
Rising demand for ED services and relative shortage of
hospital beds are major causes of ED crowding and longer
waiting times [4]. Length of Stay (LOS) in ED is usually
defined as the time from patient registration in ED to
patient discharge or transfer to another facility, or ward
[2, 9]. ED LOS is perceived as an important component
of ED overcrowding [7, 9] and a quality indicator for ED
throughput [6].

Longer LOS in ED had poor clinical outcomes such
as increased mortality/morbidity [7] and complication
rates, decreased quality of care [1, 2] and patient satisfac-
tion, ambulance diversion, and higher levels of recurrent
ED crowding [2, 3]. Thus, LOS is an important measure
of treatment timeliness when correcting for the severity
of illness, patient safety, patient satisfaction, and qual-
ity of care in ED [2, 6, 8, 9]. Predicting length of stay is
important in clinical and informatics research [10] and
important to improve ED care and efficiency [3, 11]. The
model’s predicted ED LOS may provide useful informa-
tion for physicians or patients to better anticipate an
individual’s LOS and to help the administrative level plan
its staffing policy [12]. Additionally, the development of
a prediction tool could assist in bed management and
patient flow through ED and hospitals [13].

Many studies have been conducted to develop ED
LOS prediction models. However, to the best of our
knowledge, no previous systematic literature review has
summarized these studies. Given the lack of evidence,
additional research is needed to explore the related
studies in this area and to address this knowledge gap.
Considering recent evidence demonstrating the limited
implementation and thus limited impact of hospital poli-
cies to improve patient flow through the ED is important
[10, 11].

This study aims to systematically review and appraise
the reporting and methodological quality of all develop-
ment (with or without internal validation) and external
validation studies describing a model aimed at predict-
ing LOS in ED. It also provides recommendations for
improving their reporting a prediction model for ED
LOS.

Methods

Search strategy

We searched the PubMed (Medline), Scopus, and
Web of Science databases for journal articles based on
keywords in all fields until 10 September 2023, using
the following query: ("length of stay") AND (emer-
gency OR urgent) AND (prognostic OR prognosis OR
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predict*). All references were imported into the litera-
ture management program EndNote. All results were
screened for relevance against our inclusion and exclu-
sion criteria.

Inclusion and exclusion criteria

All original papers were included if they have described
either the development (with or without internal valida-
tion) or external validation of a prediction model for LOS
in emergency department patients. All duplicate articles,
conference abstracts, and reviews were excluded. Only
English articles were included. The review follows the
2020 Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines recommended
by the Cochrane Handbook for Systematic Reviews of
Interventions [13].

Selection of studies

Two reviewers (H. K and R. F) independently screened
the titles and abstracts using Rayyan' research tool.
Rayyan provides cooperative work on the systemat-
ics review and easy to orders articles and extracts
data for blinded screening and automatic removal of
duplicates. The results were compared and discussed
until a consensus was reached. Discrepancies between
the two reviewers were resolved by consensus involv-
ing a third reviewer (S. E). Figure 1 shows the search
flowchart.

Assessment of methodological and reporting quality

We used a checklist developed for critical appraisal and
data extraction for systematic reviews of prediction mod-
eling studies (CHARMS) [14]. This consists of eleven
domains, each containing several (one to six) key items,
resulting in a total of 32 key items [14]. We extended this
checklist with three additional items taken from a scor-
ing framework for assessing the quality of reporting in
prediction model development studies [12] (Table 1). The
total number of included key items was 39 for 12 differ-
ent domains.

We extracted 11 items from the literature to evaluate
the methodological quality of model development studies
[12, 14, 49, 50] (Table 2).

Each key item was rated as ‘yes, ‘partly; or ‘not’ for the
reporting as well as for the methodological quality, with
a respective score of 2, 1, or 0. We summarized these
results to rate the reporting and methodological quality
of the model development studies. Table 2 describes the
extracted data items to quantify each particular domain
of the checklist.

! https://www.rayyan.ai/
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Fig. 1 PRISMA flow diagram of the study screening process

Results

Search strategy

Online searching resulted in 12,193 articles. Initial
screening of titles and abstracts rendered 124 articles
for full-text review. Based on the full-text review, 90
articles were excluded because they focused on factors
associated with ED LOS, or no prediction model was
reported. As shown in Table 3, 34 articles were included
for full-text analysis and data extraction. In total, 29
models were developed [15-37, 39, 42, 43, 45, 47, 48]
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Studies were excluded for:

Irrelevance to subject (n=3065)

Not in the emergency department (n=3237)
Unrelated to the prediction model (n=2679)
Conference abstract/paper (n= 19)

Review articles (n=278)

SNENENENEN

Studies were excluded for:
v" Outcome not LOS (n=27)
v Related only to factors associated with LOS (n=
142)
v" Not a new/validation/calibration model (n= 54)
n=223

Full text articles excluded for:
v No prediction models
n=90

)
Duplicate studies were removed
2 n=2,568
5
o
s !
2]
Studies were screened for eligibility
based on the title
n=9,625
: !
:j:n Studies were screened for eligibility
m based on the abstract 3
n=347
— l
)
§ Full text studiés'\x{e're screened for :
.éi) eligibility
= n=124
3
— !
)
i
ﬂ . . . .
g Studies included in the review
N n=34
=
<
<
<
—

and five studies [40, 41, 44, 46, 47] described the vali-
dation of the Emergency Severity Index (ESI), Canadian
emergency department Triage and Acuity Scale (CTAS),
or ENP-stream models.

Assessment of methodological and reporting quality
Source of data

All studies used a cohort study design. A total of 28 stud-
ies were retrospective [15-20, 22-36, 40—43, 45-47] and
four were prospective [37, 39, 44, 48]. One study used
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Table 3 Characteristics of the selected studies for the systematic review

N  Author Year Journal Country and ED setting EDLOS Cut-Off

1 Lee S[16] 2023  Personalized Medicine 1US (€24 h,<48 h,<4 days, <7 days)

2 Zeleke AJ[17] 2023  Frontiers in Artificial Intelligence 1 ltaly >6h

3 LleeH[18] 2023 Nursing Open 1 Korea (£6,>6)h

4 KadriF[19] 2023  Ambient Intelligence and Humanized 1 France (<120,120-210, 210-300, 300-480, > 480)
Computing min

5 LeeKS[20] 2022 BMC Emergency Medicine 1 Korea (<6,26)h

6 Srivastava S [21] 2022 Journal of Hypertension 1US Continious

7 EtuEE[22] 2022 |EEE Access 1US Continious

8 Chang YH[23] 2022 BMC Emergency Medicine 1 Taiwan <4h,=24h

9  d'Etienne JP [24] 2021 Am J Emerg Med 1US (6,8,12,16,23) h

10 Laher AE [25] 2021 PloS one 1 South Africa (<7,>7)days

11 BacchiS[15] 2020 Internal and Emergency Medicine 1 Australia (<2,>2)days

12 Sweeny A [26] 2020 Internal Medicine J 1 Australia (>4,>6,>8)h

13 Sricharoen P [21] 2020 Medicina 1 Thailand Continuous

14 Rahman MA [28] 2020 Emergency Medicine Australasia 1 Australia <4h,=4h

15 Curiati PK[29] 2020  Annals of Emergency Medicine 1 Brazil Continuous

16 Chen C-H [30] 2020 The American Journal of Emergency 1 Taiwan <6h,>6h
Medicine

17 Street, M [31] 2018 European Journal of Emergency Medicine 1 Australia >4 h

18 Gill,S.D[32] 2018 Emergency Medicine Australasia 1 Australia (0,50,100,150,200,250)min

19 Zhu,T[33] 2017  IEEE journal of biomedical and health 1 China (>4h,>6h,>24h,>72h, less than one
informatics week)

20 Chaou C-H [34] 2017 PloSone 1 China Continuous

21 Warren M [35] 2016 AmJ Emerg Med 1TUS <8h,28h

22 Prisk D [36] 2016 West J Emerg Med 1 New Zealand Continuous

23 Launay CP [37] 2015 European Journal of Internal Medicine 1 France Continuous

24 Stephens R [38] 2014 JEmerg Med 1US >24h

25 Casalino E [39] 2012 Emerg Med J 1 France (<160,>160,<485,>485) min

26 Green N [40] 2012 Pediatr Emerg Care 1US Continuous

27 vanderlindenC[41] 2012 IntEmerg Nurs 1 Netheland Continious

28 Nejtek V. A [42] 2011 J Psychiatr Pract 1US (1-6,7-12,13-24,25-48,49-72,>72)h

29 DingR[43] 2010  Acad Emerg Med 4US Continious

30 Chi, C.H44] 2006 J Formos Med Assoc 1 Taiwan (<6, 6-24, 24-48,>48)h

31 Walsh P [45] 2004  EurJ Emerg Med 1TUS Continious

32 Tanabe P [46] 2004 JEmerg Nurs 1US Continious

33 Jimenez J [47] 2003 Cjem 1 Andorra Continious

34 Tandberg D [48] 1994  Ann Emerg Med 1 Mexico Continious

h hour, min minute

the case—control design [38] and one study used cross-
sectional analysis [21].

Participants

Only one paper did not report the year of study [45].
The year of emergency admission for the rest of the
studies ranged from 1989 [48] to 2022 [17, 29, 32]. The
minimum and maximum duration of data collection was
2 months [15] and 4 years [16, 20], respectively. All stud-
ies were conducted in 13 countries of which 12 studies

were performed in the United States [16, 21, 22, 24, 38,
40, 42, 43, 45, 46, 48, 51] and other studies done in The
Netherlands [41], France[37, 39, 52], Taiwan [23, 30, 34,
44], Andorra [47], Australia [15, 26, 28, 31, 32], South
Africa [25]), Thailand [27], Brazil [29], Korea [18, 20],
New Zealand [36], Italy [17] and China [33]. Studies
were conducted in general (N=20) [15-17, 20-22, 24,
26-28, 30, 32, 33, 36, 41, 43, 45-48], mental (N=3) [35,
38, 42], adult (N=>5) [18, 23, 25, 39, 44, 53], old people
(N=4) [26, 29, 31, 37] and pediatric (N=2) EDs [40, 52].
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All studies included all patients who were admitted in
EDs during the period of their study and most of them
extracted patient data from electronic patient databases.
Table 3 shows the characteristics of the selected studies
for the systematic review.

As shown in Table 1, eight studies [15, 18, 19, 28, 35,
45, 46, 48] had no specific exclusion/inclusion crite-
ria and selected all patients who were admitted to EDs.
There were different exclusion criteria in the rest of the
studies. ED deaths and trauma or mental patients were
excluded from 11 studies [17, 23, 26, 27, 31, 33, 38-40,
42-44]. Other studies excluded patients who left without
being seen or without physician assessment [17, 23, 30,
32, 33, 38, 41, 43, 47], left after medical advice [23, 38,
43], eloped [23, 38] or those considered as outpatients
[17, 23, 42]. Other exclusion criteria were: age restric-
tions [16, 20, 21, 26, 27, 29, 30, 37, 39, 40, 42, 44], eth-
nicity restriction [36], registration errors, incomplete or
missing data [20, 21, 24, 27, 38, 43, 47], no confirmation
of COVID-19 [22], treated elsewhere and not in the study
EDs, and visits with multiple missing time or invalid dis-
charge time [34, 43].

Only one study included patients who left the ED
against medical advice (including discharge due to critical
condition), who were transferred to another hospital, or
were discharged from the ED after LOS>24 h of obser-
vation, and/or died in the ED [44]. Other studies did not
mention readmissions, transfer from or to another ED/
Hospital, and patients who did not survive ED stay.

Outcome(s) to be predicted

Number of (primary and secondary) outcome variables
in the included studies varied from one [16, 18, 19, 22,
23, 25, 27, 28, 30, 35-37, 44] to five [29]. Eighteen stud-
ies clearly defined outcome variable(s) [15-20, 22-25,
27, 31-33, 36—-41, 46]. The others did not provide a
clear definition for LOS. The lack of a unique definition
for the LOS in ED might have led to different results.
Seven studies defined ED LOS as a number of minutes
(or hours) between a patient’s arrival/identification
to ED and discharge [24, 27, 38-41, 46]. The primary
outcome measure in the reviewed studies was ED LOS
(N=28) [15-20, 22, 23, 25-28, 30-33, 35-42, 45-48],
triage level (N=1) [43, 44], ED resource usage (N=1)
[24], hospital admission (N=1) [29], disposition from
ED (N=1) [21] and ED waiting room time (n=1) [43,
44]. The twenty-three studies reported on the granu-
larity of ED LOS in minutes [19, 32, 36, 39-41, 43, 44,
46, 47] or hours [18, 20, 22, 23, 25-28, 31, 33, 35, 38,
42, 48]. Some of these studies reported the mean or
median of all patient ED stay. The mean of ED LOS
ranged from 1 h to 9.2 days [15, 18, 33, 36, 37, 39-42,
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44, 46] and the median of ED LOS ranged from 15 min
to 54.6 h [20, 22, 27, 31, 33-35, 38, 43, 44, 46, 47]. Two
studies did not provide a clear description of the statis-
tical analysis methods [32, 45].

Candidate predictors

Not all studies reported on the predictor selection strat-
egy. Table 2 shows the number and type of predictors in
each model. Predictor variables were mostly measured
at admission time or within the first 24 h of admission.
Predictors selected for inclusion in modeling may have a
large but spurious association with the outcome, which
leads to predictor selection bias. Including such predic-
tors increases the likelihood of over-fitting and thus over-
optimistic predictions of a model’s performance for other
individuals [49]. The number of continuous predictors
was 0 [24, 36, 39, 41, 45, 47, 48] or 1 (age) [17, 21, 28, 35,
38, 40, 4244, 46] or 2 [15, 20, 30] or 3 [26, 31] or 4 [33,
34] or 7 [29] or 8 [25] or 9 [19] or ten [27] or eleven [37]
or eighteen [23]. The number of categories of all categori-
cal predictors ranged from 0 to 19. Two studies used cut
points to categorize continuous variables [20, 39]. Only
one study used logarithmic transformation to transform
the skewed continuous variables to approximately con-
form to normality [41].

As shown in Table 2, age, gender, acuity level, mode
of arrival, patient disposition, and insurance type are
important predictors for ED LOS that were used in most
studies.

Sample size

The number of registered patients ranged from 100 [42]
to over 4 million [16, 43] and the number of patients
selected for model development or validation was
between 42 [42] and 4,645,483 [16] patients.

Missing data

Most studies did not describe the completeness of
data and/or handling of missing data. Some studies
excluded all missing data for development and vali-
dation models. Ignoring the missing data can intro-
duce bias. It is especially poor when the percentage
of missing values per attribute varies considerably
[23]. Differences between studies in the amount, type
of missing data, and the methods used to handle this
missing data may markedly influence model develop-
ment and predictive performance. Only eight studies
reported on the percentage of missing values [17, 21,
23, 28, 38, 42, 43, 47] and two studies described the
handling of missing data [19, 22]. Specifically, these
studies excluded all missing data for development and
validation models.
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Model development

Twenty-nine studies developed one or more new mod-
els for predicting emergency department LOS [24-33,
35, 38, 39, 42, 43, 45, 48]. Models were developed using
Logistic Regression [15, 18, 20, 21, 23-26, 29, 31, 35, 38,
39, 45, 48], Artificial Neural Network (ANN) [15, 16, 22,
37, 45], convolutional neural networks (CNN) [15], gen-
erative adversarial network (GAN) [19], accelerated fail-
ure time (AFT) [34], time series [48], Gradient Boosting
Machine (GBM) [32], Coxian phase-type distribution
model [33], Decision tree algorithm [28], linear regres-
sion [21, 30, 36, 43], Poisson regression [27, 36], and
various machine learning methods (Random Forest
(RF), Support Vector Machines (SVM), Gradient Boost-
ing (GB), AdaBoost, K-Nearest Neighbours (KNN),
CatBoost, XGBoost, Decision Tree, Naive Bayes) [15,
17, 18, 22, 23]. Note that these papers have used some
of these machine learning models. It should be noted
that only one study used the quantile regression analy-
sis since the distribution of the response variable (ED
service completion) was highly skewed, with long right
tails [43].

Eight studies evaluated univariate associations with a
prolonged LOS [24, 25, 27-29, 32, 35, 36]. Three studies
used all candidate variables. The remaining studies did
not mention how the initial set of variables was selected.
Further details are shown in Table 2. Also, Table 4 shows
the factors analyzed and statistics of the selected studies
for this systematic review.

Model performance measures

Fourteen studies reported calibration measures (i.e. the
agreement between predictions and observed outcomes)
among which six studies used the Hosmer—Lemeshow
goodness-of-fit test [17, 18, 31, 34, 35, 39, 48], two stud-
ies used the visual inspection of the observed vs. pre-
dicted proportions [31, 43], five studies used the mean
squared error [15, 17, 19, 30, 31], one study used the
life-table method [34], two studies used calibration plots
[17, 29], one study used the kappa statistic [45], and
one study used the linear regression method to inspect
the association of forecasts with the actual outcomes
[48]. A total of 13 studies used the Receiver Operating
Characteristic (ROC) curve to quantify the discrimina-
tion power of the prediction model (i.e. the ability of the
model to discriminate between those with and those
without the event) [15-18, 22-24, 29, 31, 32, 35, 37,
39]. Nine studies also calculated the sensitivity, specific-
ity, and positive and negative predictive values [15-18,
22, 23, 29, 31, 37]. Note that limited use of the popular
performance measures prevents us from integrating the
prediction powers of the models.
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Model evaluation

Among development studies, sixteen studies performed
internal validation, which useda subset of the train-
ing dataset to estimate the model performance (N=9
split sample and N=7 cross-validation) [15-19, 22-24,
28-32, 43, 45, 48], three studies used the entire dataset
for both training and evaluating the model [34, 35, 39],
and twelve studies performed no evaluation approach
[20, 21, 25, 26, 33-37, 40, 44, 47]. All six external valida-
tion studies assessed the predictive validity of the previ-
ously published models by investigating the relationship
between scores and ED LOS, mostly using the correlation
coefficients.

Emergency severity index (ESI), Canadian Emergency
Department Triage and Acuity Scale (CTAS), Charlson
comorbidity index (CCI), Korean Triage and Acuity Scale
(KTAS), Pronto Atendimento Geriétrico Especializado
(ProAGE) and Emergency Nurse Practitioners (ENPs)
were six triage instruments that were validated by nine
studies to assess these instruments in predicting ED
LOS, hospital admission, and number of resources uti-
lized. The results of these studies showed that there was
an excellent correlation between the ESI (version 3&4),
CTAS, and ENP-streaming and patients’ injury sever-
ity. The findings of these studies showed that mean LOS
was significantly shorter for the patients in the ENP
stream in comparison with their counterparts [41]. The
mean of LOS in ED was also significantly higher for the
patients with higher acuity levels in comparison with the
patients with lower acuity levels (257 vs. 143, P<0.001)
[40]. Moreover, the patients with ESI 4-5 and 2-3 had
the shortest and longest LOS in ED, respectively [44, 46].

Reporting on the developed model

All studies that developed a new model (n=29) reported
the final model. However, since it was not possible to
provide a comprehensible representation of the ANN
model, only the relative importance of each variable was
estimated by counting the number of times each vari-
able was selected as one of the top five variables by each
NN in the ensemble. An ensemble is a ‘committee’ of
neural networks that usually outperforms single neural
networks. [45]. Six studies reported the regression coef-
ficients [22, 29, 30, 38, 39, 43] and eleven studies were
reproducible, since the final model, initial predictors,
and final set of variables included in the model were
reported [16-19, 22, 23, 28, 29, 34, 39, 45, 48].

Interpretation and discussion of the eligible studies

All studies presented the intended use and interpreta-
tion of the validated or developed model(s). Use inten-
tions were mostly as a patient triage or risk management
[9, 24-31, 33, 34, 45, 48], ED resource utilization [24, 25,
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30, 44, 46—48], identifying patients suitable for treatment
[41], and determining valid factors that are significant pre-
dictors for hospital/ED admission and ED LOS [26, 27, 29,
31, 32, 38-40, 42, 43]. All reviewed models were discussed
based on the validation results of the studies. However,
only five development studies [26, 28, 29, 45, 48] and three
validation studies [41, 44, 46] have discussed the strengths
and weaknesses of the models.

Reporting and methodological quality assessment score
Table 1 shows domains and (key) items of the used
CHARMS [15] checklist accompanied with the reporting
and methodological scores used for quality assessment
of the studies. The highest possible reporting scores for
the development and validation studies were 67 and 43
respectively. The total score per reporting item ranged
from 0 to 68 which is the sum of the reporting score [0, 1,
2] over models. The highest methodological score was 8
for development studies and 6 for validation studies. The
total score achieved per methodological item (the sum of
the methodological scores [0, 1, 2] over models) ranged
from O to 68.

Discussion

The average length of stay is an increasingly concern-
ing issue and an important index for bed administra-
tion, patient care, and consequently benchmarking of
the emergency departments. Accurate prediction of
LOS in ED will help physicians make informed deci-
sions during risk assessment and patient stratification.
This study aimed to quantify the methodological and
reporting quality of prediction models which have
been developed or externally evaluated to predict the
LOS in ED.

The most important finding of this study is the remark-
able differences in methods used for model development,
different thresholds used to categorize the depend-
ent variable, and inclusion of different patient groups
which affected the comparability of the models. A total
of 34 studies were published from 1994 to 2023 aim-
ing to develop (N=29) or externally validate (N=5) the
prediction models for LOS in ED. Different modeling
approaches were used to generate the function predicting
the outcome. Since the linear regression method is not
applicable when the normality assumption is violated,
about %44 of the development studies dichotomized the
dependent variable using different thresholds and applied
the Logistic Regression method. Five studies used differ-
ent machine learning techniques to predict ED LOS. Of
these, Gradient Boosting (GB) in two studies and CAT-
Boost and generative adversarial network (GAN) in two
other studies had the best results in predicting LOS [17,
19, 22, 23]. In one study Logistic Regression shows better
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results than machine learning methods [18]. In addition,
Logistic Regression still had similar results compared to
machine learning approaches.

Two studies used the Coxian phase-type distribution
method and quantile regression because the response
variable was highly skewed to the left [33, 40]. These
methods seemed to be useful because, in the emergency
setting, we need to make a serious investigation not only
on the middle of the distribution but also on extreme
events. ANN was also used in five studies [15, 16, 22, 37,
45]. Using different types of ANN, multilayer perceptron
(MLP) had significant results than another type of ANN
[37]. It has the advantage over Logistic Regression when
the relationships between the inputs and the outputs are
not straightforwardly expressed in a pre-specified para-
metric model. However, the lack of model specification
and proneness to over-fitting makes it difficult to be used
in clinical and administrative judgments. Tandberg et al.
used time series analysis [35]. This approach can be use-
ful when data are repeatedly measured over time. Gill
et al. reported that they used the GBM method because
it allows for modeling of interactions and nonlinearities
within the data and can handle a large number of vari-
ables [33]. One study used a decision tree. This method
can demonstrate important patterns intuitively, helping
the clinician to make sense of potentially complex combi-
nations of factors [28].

About 40% and 33% of the studies reported calibration
and discrimination measures for categorized outcomes,
respectively. The Hosmer—Lemeshow goodness-of-fit test
was the most frequently used test to assess the agreement
between predicted probabilities and observed outcomes
for categorized outcomes. However, this widely used test
has several drawbacks (e.g., poor interpretation and lim-
ited power). Moreover, the ROC curve which is the most
popular method to evaluate the discrimination power
of the prediction models with binary variables was only
used in thirteen studies among which only nine studies
calculated the classification-based performance measures
(e.g., sensitivity, specificity, etc.). There are numerous tra-
ditional and novel performance measures for estimating
the prediction power of the models [54] which have been
rarely used in both development and evaluation studies.

Patient triage and resource optimization was the most
mentioned intention of the model in the included studies.
Triage is commonly used to rapidly identify the patients
who require immediate care and the patients who can-
not wait before being evaluated and treated. Once the
LOS is precisely predicted, the physicians will perform an
informed and accurate risk assessment and consequently
patient stratification. This will also result in helping opti-
mize the bed occupation rate as well as resource utiliza-
tion in crowded Eds [55].
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Both development and validation studies completely
reported the following key items: number and type of
predictors, definition of the candidate predictors, time of
predictor measurement, number of participants and out-
comes/events, and event/(binary) variable ratio, model
interpretation, source of data, and sample size.

Limitations and strengths

A strength of our study is that we systematically assessed
the studies found by a framework published by Moons et al.
(CHARMYS) [14] extended with additional items from other
studies that developed a prediction model [12, 56, 57] to
assess the studies and models on reporting and methodo-
logical quality. We included studies that developed predic-
tion models for ED LOS and did not include studies that
evaluate whether a specific characteristic influences or is a
predictor for ED LOS. Another strength is that this is the
first systematic review of ED LOS prediction models for
emergency department patients.

Our study has some limitations over previous reviews
of prediction models for LOS in emergency departments.
First, there exist some prediction models developed for
patients with ED LOS which do not meet our inclusion
criteria because they partly addressed the prediction
of ED LOS. Second, there is possible some papers are
missed in our review. Third, we limited our research to
English-language articles. Fourth, we researched only
one database, PubMed. Our research terms may not have
revealed all aspects of the topic.

Implications for clinicians/policymakers/researchers/
model developers

Available prediction models for LOS in ED have poor to
fair levels of methodological and reporting quality which
makes them barely useful for clinical practice and admin-
istrative decision making. Many important issues are
required to be addressed to provide accurate predictions
of the LOS in ED.

Future research

We recommend that all development and validation stud-
ies use a clear definition of LOS in ED. This might be con-
sidered as an essential prerequisite for the comparability
of the models. Moreover, models that have not been vali-
dated may not perform well in practice because of defi-
ciencies in the development methods or because the new
sample is too different from the original. Thus, it is highly
recommended to evaluate available models on different
datasets and update them if required. It should be noted
that using the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagno-
sis (TRIPOD) checklist can help future investigators to
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improve the reporting quality and indirectly the meth-
odological quality of prediction model studies.

Conclusion

Various studies on prediction models for ED LOS were
published but they are fairly heterogeneous and suffer
from methodological and reporting issues. Model devel-
opment studies were associated with a poor to a fair
level of methodological quality in terms of the predictor
selection approach, the sample size, reproducibility of
the results, missing imputation technique, and avoiding
dichotomizing continuous variables. Moreover, it is rec-
ommended that future investigators use the confirmed
checklist to improve the quality of reporting. Physi-
cians considering using these models to predict ED LOS
should interpret them with reservation until a validation
study using recent local data has shown that they obtain
moderate calibration and produce accurate predictions.
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