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Abstract
Backgrounds Acute Appendicitis (AA) is one of the most common surgical emergencies worldwide. This study 
aims to investigate the predictive performances of 6 different Machine Learning (ML) algorithms for simple and 
complicated AA.

Methods Data regarding operated AA patients between 2012 and 2022 were analyzed retrospectively. Based 
on operative findings, patients were evaluated under two groups: perforated AA and none-perforated AA. The 
features that showed statistical significance (p < 0.05) in both univariate and multivariate analysis were included 
in the prediction models as input features. Five different error metrics and the area under the receiver operating 
characteristic curve (AUC) were used for model comparison.

Results A total number of 1132 patients were included in the study. Patients were divided into training (932 
samples), testing (100 samples), and validation (100 samples) sets. Age, gender, neutrophil count, lymphocyte count, 
Neutrophil to Lymphocyte ratio, total bilirubin, C-Reactive Protein (CRP), Appendix Diameter, and PeriAppendicular 
Liquid Collection (PALC) were significantly different between the two groups. In the multivariate analysis, age, 
CRP, and PALC continued to show a significant difference in the perforated AA group. According to univariate and 
multivariate analysis, two data sets were used in the prediction model. K-Nearest Neighbors and Logistic Regression 
algorithms achieved the best prediction performance in the validation group with an accuracy of 96%.

Conclusion The results showed that using only three input features (age, CRP, and PALC), the severity of AA can be 
predicted with high accuracy. The developed prediction model can be useful in clinical practice.

Highlights
 • ML models can be used in all parts of medical treatments.
 • With good features, it would be useful in the prediction of surgical pathologies.
 • ML models are strong predictors of the severity of acute appendicitis.
 • With simple and easily found tools, the Logistic Regression algorithm predicted the severity of acute 

appendicitis with 96% accuracy.
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Introduction
Acute appendicitis (AA) is one of the most common 
pathologies among all emergent surgical procedures. 
The lifetime incidence is 7% in the whole population [1]. 
A clinical diagnosis can be made with clinical symptom 
assessment, a physical examination, laboratory tests, 
and radiological imaging in patients admitted to the 
emergency department. In recent years, easily accessible 
methods, such as C-reactive protein (CRP), leukocyte 
count, neutrophil to lymphocyte ratio (NLR), total biliru-
bin, multislice computed tomography, and ultrasonogra-
phy imaging techniques have been used in the diagnosis 
of AA [2, 3]. Clinical symptoms can vary in many patients 
[4, 5]; hence, specific instruments were developed for 
the diagnosis. The most popular of these instruments is 
the Alvarado Scoring System, which was developed by 
Alfredo Alvarado in 1985 [6]. The Appendicitis Inflam-
matory Response Score was developed by Andersson et 
al., who combined the Alvarado with CRP and accurate 
prior results in diagnosing AA [7]. The purpose of all 
these systems is the early detection of AA and the avoid-
ance of negative appendectomies and laparotomy-lapa-
roscopies. In addition, delay in the diagnosis of AA may 
lead to complications [8, 9]. Due to the high incidence 
rate of acute appendicitis, the necessary tests should be 
available and easily performed at almost every hospital to 
help diagnose the disease without delay. Distinguishing 
simple and perforated/complicated cases when conduct-
ing these basic examinations is crucial in planning treat-
ment and referring these cases to experienced centers.

Artificial Intelligence is a subfield of computer science 
and engineering that seeks to develop intelligent systems 
that can simulate human-like cognitive abilities. Machine 
Learning (ML) is a subfield of Artificial Intelligence that 
focuses on developing algorithms and statistical mod-
els that enable computers to learn from experience and 
improve without explicit programming autonomously. 
In the field of healthcare, ML algorithms analyze medical 
records and imaging data to support disease diagnosis, 
treatment planning, and drug discovery. In addition, ML 
provides crucial solutions for precision medicine, which 
endeavors to provide specific medical treatments to indi-
vidual patients based on their unique genetic history, life-
style, and environment. In several fields of medicine, ML 
has been used to help clinicians in diagnosis, treatment, 
and various modalities [10–14]. ML algorithms were also 
adopted in many studies to diagnose and treat AA [15, 
16]. In addition to these studies, several researchers used 

ML algorithms to predict and diagnose different diseases 
with similar workflows [17–19].

This study evaluated the clinicopathological charac-
teristics of AA patients in a tertiary center and investi-
gated the predictive performances of the different ML 
algorithms. The primary objective of this research is to 
develop a simple and reliable prediction model using pre-
operative data to support physicians in assessing opera-
tive outcomes.

Methods
Data from patients diagnosed with AA who underwent 
an emergency appendectomy between 2012 and 2022 
in the hospital’s general surgery department were ana-
lyzed retrospectively. Patients under age 18 and those 
who had undergone an elective appendectomy for vari-
ous reasons were excluded from the study. Patients with 
missing data were also excluded. An operational decision 
was made if the following were present: classic symptoms 
include right lower quadrant abdominal pain, tender-
ness at McBurney’s point, fever, nausea, vomiting, and 
elevated white blood cell count. Imaging confirmation 
(ultrasound or CT scan) shows signs of appendicitis, sus-
picion of complications, and failure of Non-Operative 
Management. Patients were examined within two groups: 
perforated AA and Non-Perforated AA. The diagnosis 
of perforated AA was defined according to the surgeon’s 
operative findings.

Demographics, including age and gender, peripheral 
blood analysis such as white blood cell (WBC) count, 
neutrophil count, lymphocyte count, platelet count and 
NLR, total bilirubin (TB), and CRP were recorded. The 
laboratory parameters chosen in the study were based on 
those that can be easily determined in almost all emer-
gency departments. Multislice abdominal computer-
ized tomography and abdominal ultrasound were used 
for preoperative radiologic evaluation. Appendix diam-
eter (AppD) was calculated from preoperative radio-
logic images. The presence or absence of Periapendiculer 
Liquid Collection (PALC) in the radiological images 
was noted. Postoperative complications were evaluated 
according to the Clavien-Dindo classification [20].

Statistical analysis
SPSS version 24.0 (Spss inc. IBM, Chicago, US) was used 
for statistical analysis. The clinical and laboratory fea-
tures were compared between the perforated AA and 
none-perforated AA groups. Data on quantitative vari-
ables are presented as the median (minimum-maximum) 

 • This study also used an unseen data set to validate the results of training data. This increased the reliability of 
the prediction models.
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and frequencies for qualitative variables. A Chi-square 
[21] test or Fisher’s exact test [22] was used for the nomi-
nal variable and the Mann-Whitney U test for the con-
tinuous variable with abnormal distributions. Univariate 
logistic analysis was used for feature selection. Multivari-
ate logistic regression analysis was used to determine the 
significant features of the univariate analysis.

Machine learning algorithms
In this study, six different ML algorithms: k-Nearest 
Neighbor (k-NN), Decision Tree (DT), Logistic Regres-
sion (LR), Support Vector Machine (SVM), Gaussian 
Naïve Bayes (GNB), and Multi-Layer Perceptron (MLP) 
were used for predicting simple and complicated AA.

k-NN is a supervised ML algorithm for classifica-
tion and regression. k-NN works by finding the k near-
est training instances to a given test instance and using 
those neighbors to make a prediction. k-NN is a simple 
yet powerful algorithm based on the idea that similar 
instances are likely to have the same class label [23].

DT is a supervised ML algorithm for classification and 
regression. DT works by recursively splitting the data 
into subsets based on the values of the input features 
and making predictions based on the majority class in 
each subset. DTs are simple to interpret, visualize, and 
implement and are commonly used for feature selection, 
outlier detection, and handling non-linear and complex 
relationships between features and targets [24].

LR is a supervised ML algorithm for binary classifica-
tion. LR works by modeling the relationship between the 
input features and the probability of the positive class 
and using that model to make predictions. LR is a simple 
and interpretable algorithm widely used for binary classi-
fication problems and is often used as a baseline for com-
parison with more complex models [25].

SVM is a supervised ML algorithm for classification 
and regression. SVM works by finding the hyperplane 
that maximally separates the data into two classes and 
using that hyperplane to make predictions. SVM is a 
robust algorithm that is particularly well-suited for prob-
lems with high-dimensional data and problems with 
many features relative to the number of instances [26].

MLP is a supervised ML algorithm for classification 
and regression. MLP uses a feedforward neural network 
with one or more hidden layers to model the relationship 
between the input features and the target [27].

GNB is a supervised ML algorithm for classification. 
GNB makes predictions based on the Bayes theorem, 
which states that the probability of a class given the fea-
tures is proportional to the prior probability of the class 
and the conditional probability of the features given the 
class [28].

Figure  1 gives conceptual illustrations of the applied 
ML algorithms. These algorithms were carried out with 

Scikit-learn, one of the well-known Python libraries for 
ML.

Determining the optimal hyperparameters is a crucial 
aspect of enhancing the prediction performance of ML 
algorithms. In this study, we utilized a grid search tech-
nique within the Scikit-learn framework to find the best 
set of hyperparameters. This method searches through 
a range of predefined parameters and provides the ones 
with the highest prediction accuracy. Table  1 gives the 
interval of the hyperparameters for each ML algorithm 
used in the grid search.

The prediction performance of the ML algorithms is 
assessed using several metrics such as Accuracy, Sensitiv-
ity, Specificity, Positive Predictive Value (PPV), and Neg-
ative Predictive Value (NPV). Accuracy is the proportion 
of correct predictions made by the model. Sensitivity 
(Recall or True Positive Rate) measures how many mod-
els correctly identified positive cases. Specificity is a per-
formance metric in binary classification problems that 
measures the proportion of negative instances correctly 
identified as negative by the classifier. PPV is defined as 
the proportion of positive predictions that are actually 
correct. NPV is defined as the proportion of negative 
predictions that are actually correct. In addition, we per-
formed a receiver operating characteristic (ROC) curve 
analysis for these algorithms and compared the AUC 
values.

This study was approved by the Ethics Committee of 
the University of Health Sciences Izmir Bozyaka Train-
ing and Research Hospital (decision date: 01.12.2022 no: 
2022 / 163). All methods were performed in accordance 
with the relevant guidelines and regulations.

Results
Between January 2012 and December 2022, 1568 patients 
underwent appendiceal surgeries. A total number of 256 
patients were excluded because of missing data. Among 
them, 128 were excluded from the study because they 
were under 18 years old. Fifty-two patients who under-
went elective appendectomies due to other reasons (i.e., 
mucinous appendiceal disease combined with gyneco-
logical pathologies and plastron appendicitis, etc.) were 
also excluded. Overall, 1132 patients who underwent 
appendectomy fulfilled the inclusion criteria for this 
study. The median age of the entire cohort was 37 (IQR: 
27–50), and the majority was male [n: 847 (74%)]. There 
were 990 patients in the non-perforated AA group and 
142 patients in the perforated AA group. Detailed demo-
graphic and baseline preoperative characteristics of the 
two groups are given in Table 2. With univariate analysis, 
the WBC count and platelet count were similar between 
the groups. However, the median age, gender, neutro-
phil count, lymphocyte count, NLR, TB, CRP, AppD, 
and PALC were significantly different between the two 
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groups. A multivariate analysis of the features which was 
found to be significant in the univariate analysis was per-
formed. In the multivariate analysis, age, CRP, and PALC 
continued to be independent factors for perforated AA 
(Table 3).

Postoperative complications, assessed according to the 
Clavien-Dindo Classification, are summarized in detail 
in Table 4. Although Grade IIIA complication rates were 
similar between the two groups, Grade I-II and Grade 
IIIB complications were significantly higher in the per-
forated AA group (p: <0.001 and p: 0.005, respectively). 

Table 1 Grid-Search parameters of ML algorithms
TablesAlgorithms Parameters
K-NN n_neighbors = {1, …, 20}, metric = 

{minkowski, euclidean, manhattan}
DT max_depth = {3, …, 8}, criterion = {gini, 

entropy}
LR C = {0.01, 0.012, 0.013, …, 10,000}, penalty = 

{l1, l2, elasticnet}, solver = {newton-cg, lbfgs, 
liblinear}

SVM C = {0, 0.1, 0.2, …, 1.9}, gamma = {scale, 
auto}, kernel = {linear, poly, rbf, sigmoid}

MLP hidden_layer_sizes = {1, …, 20}, max_iter = 
{1000, 1500, 2000}, solver = {lbfgs, sgd, adam}

GNB var_smoothing = {0.01, 0.011, 0.012, …, 100}

Table 2 Patient Demographics
N : 1132
Mean (± SE), 
Median(IQR)

Non-Per-
forated
(N: 990)

Perforated
(N: 142)

p

Age (Median) 35(27–48) 47(37–64) < 0.001
Gender (%)
Male
Female

755 (76%)
235 (24%)

87 (61%)
55 (39%)

< 0.001

WBC (G/L)(Median) 13.4(10.8–
16.4)

14.1 (11.2–17.4) 0.243

Neutrophil (G/l) (Median) 10.3 
(7.9–13.1)

11.5(8.3–14.6) 0.037

Lymphocyte(G/l)(Median) 1.8(1.3–2.5) 1.5(0.9–2.1) 0.002
NLR (Median) 5.5(3.5–8.9) 7.4(4.6–13.6) < 0.001
Platelet(µl)(Median) 247 

(208–285)
269(200–307) 0.982

Total Bilirubin(Median) 
(mg/dL)

0.73(0.5–
1.3)

1(0.6–1.5) < 0.001

CRP (mg/L)(Median) 13.8(4.2–
42.4)

130.3(40.7-204.6) < 0.001

AppD (mm)(Median) 10(8.5–12) 12(10–15) < 0.001
PALC
Presence
Absence

216 (22%)
774 (78%)

102 (72%)
40 (28%)

< 0.001

SD: Standard Error, IQR: InterQuartile Range, WBC: White Blood Cell, NLR: 
Neutrophil/Lymphocyte Ratio CRP: C-Reactive Protein, AppD: Appendix 
Diameter, PALC: Peri-Appendicular Liquid Collection (Significant Values are 
shown in bold.)

Fig. 1 Comparison of k-NN, DT, LR, SVM, MLP, and GNB: Patients with perforations are represented by green circles, non-perforations by blue circles, and 
unclassified patients by grey circles
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Total morbidities were also higher in the perforated AA 
group (p: <0.001).

We developed a prediction model based on different 
preoperative data sets to predict simple and complicated 
AA. The first data set (data set 1) includes Age, Gender, 
neutrophil and lymphocyte count, NLR, TB, CRP, AppD, 
and PALC, which were significant in the univariate analy-
sis as input parameters/features, whereas the second data 
set (data set 2) only included Age, CRP, and PALC, which 
were found to be independent factors for perforation in 
the multivariate analysis. Each data set consisted of 1132 
samples, and the output parameter was perforated AA in 
both data sets.

In supervised ML algorithms, the data set is generally 
split into three sets: the training data, the test data, and 
the validation data. The training data was used to train 
the model and learn the relationships between the inputs 
and outputs, while the test data was used to evaluate the 
model’s performance. The validation data helped us to 
determine how well the prediction model would perform 
on unseen data. In this study, both data sets (data set 1 
and data set 2) were randomly split into three parts: 932 
samples for training, 100 samples for testing, and 100 
samples for validating.

The 10-fold cross-validation method was used to 
evaluate the performance of all ML algorithms more 
accurately. The optimal hyperparameters of the ML 
algorithms found by the grid search for each data set are 
given in Table 5.

The five performance measures for all the ML algo-
rithms’ accuracy, sensitivity, specificity, PPV, and NPV 
are summarized in Figs.  2, 3, 4, and 5. These figures 
show that the k-NN, LR, SVM, and MLP algorithms 
demonstrate high performance, with prediction accura-
cies exceeding 90% on the test data for each data set. In 
addition, the results indicate that these algorithms per-
formed more efficiently on data set 2. These figures also 
show that all algorithms achieved a prediction accuracy 
of over 93% on the validation data for each data set. Fig-
ure  3 demonstrates that the LR and MLP algorithms 
accurately classified 90 out of 100 samples as “Non-
Perforated” for data set 1. Furthermore, it seems that all 
these algorithms, except for SVM, correctly classified six 
unseen samples as “Perforated” for data set 1. Consider-
ing Figs. 2 and 3, the LR algorithm has the best prediction 
performance on data set 1, with 96% accuracy, 60% sensi-
tivity, 100% specificity, 100% PPV, and 96% NPV. Figure 5 
indicates that the k-NN and LR algorithms accurately 
classified 90 of the 100 data samples as “non-Perforated”. 
However, four data samples were misclassified by the 

Table 3 Univariate and Multivariate Logistic Regression Analysis
N : 1132 HR 95% CI p HR 95% CI p
Age 0.959 0.948–0.969 < 0.001 0.961 0.961–0.990 0.001
Gender 2.031 1.406–2.935 < 0.001 0.364 0.820–2.269 0.231
WBC 0.986 0.967–1.006 0.165
Neutrophil 0.924 0.887–0.962 < 0.001 0.970 0.921–1.037 0.274
Lymphocyte 1.541 1.231–1.929 < 0.001 1.104 0.887–1.373 0.376
Platelet 0.965 0.812–1.023 0.680
Total Bilirubin 0.837 0.751–0.954 0.042 1.004 0.993–1.045 0.464
CRP 0.985 0.982–0.987 < 0.001 0.988 0.985–0.990 < 0.001
AppD 0.981 0.942–0.996 0.026 0.989 0.976–1.002 0.107
PALC 9.399 6.324–13.967 < 0.001 6.623 4.167–10.527 < 0.001
NLR: Neutrophil/Lymphocyte Ratio CRP: C-Reactive Protein, AppD: Appendix Diameter, PALC: Peri-Appendicular Liquid Collection. (Significant Values are shown in 
bold.)

Table 4 Perioperative Complications (30 days)
Total N: 1132 Non-Perforated

(N: 990)
Perforated
(N: 142)

p

Complication ≥ Grade III
Intra-Abdominal Abscess
Ileus
Stump Leakage
Wound Infection (Grade IIIA)
Fascial Dehiscence
Iatrogenic Colon Perforation

[N:12 (1%)]
6
0
1
3
1
1

[N: 6 (4%)]
3
1
1
0
1
0

0.058
0.008
0.109
0.511
0.705
0.705

Complication Grades*
I-II
IIIA
IIIB
Total

34
9
3
46(5%)

28
3
3
34(24%)

< 0.001
0.190
0.005
< 0.001

* Grades according to the Clavian-Dindo Classification (Significant Values are 
shown in bold.)

Table 5 The optimal parameters of the ML algorithms
Algorithms Data set 1 Data set 2
k-NN n_neighbors = 13, 

metric = minkowski
n_neighbors = 19, 
metric = manhattan

DT max_depth = 4, criterion = gini max_depth = 3, 
criterion = gini

LR C = 4.037, penalty = l1, 
solver = liblinear

C = 0.498, penalty = l2, 
solver = newton-cg

SVM C = 1.0, gamma = scale, 
kernel = poly

C = 0.1, gamma = scale, 
kernel = poly

MLP hidden_layer_sizes = 2, max_
iter = 1000, solver = lbfgs

hidden_layer_sizes = 16, 
max_iter = 1000, 
solver = lbfgs

GNB var_smoothing = 0.04 var_smoothing = 0.196
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k-NN and LR algorithms. Similarly, all algorithms appear 
to classify six previously unseen samples as “Perforated” 
accurately. Considering Figs.  4 and 5, the k-NN and LR 
algorithms showed the highest prediction performance 
with an accuracy of 96%. Consequently, the LR algorithm 
was found to have the highest accuracy in classifying the 
unseen samples as Perforated and Non-Perforated com-
pared to the other algorithms.

Figure 6 shows the AUC curve for the ML algorithms 
on data sets 1 (Fig.  6a) and 2 (Fig.  6b). In Fig.  6a, the 
AUC values of all algorithms are above 84%. However, 
using only Age, CRP, and PALC as the input parameters 
increased the AUC values of the k-NN, MLP, and GNB 
algorithms to 90%, 92%, and 89%, respectively.

Discussion
Our research has two novel contributions to the related 
literature. The first one is using the validation data set, 
which tests the prediction model on the unseen samples. 
To the best of our knowledge, this is the first study that 
uses a validation data set to predict the severity of AA. 
Hence, our results are more reliable than those of the pre-
vious works. The second main contribution of this study 
is our investigation of the effect of the input features on 
the performance of the ML algorithms. Again, to the best 

of our knowledge, this is the first study evaluating ML 
models for diagnosing the severity of AA in adults on 
two different preoperative data sets and investigating the 
effect of input features using two different data sets. This 
study showed that multidisciplinary approaches with 
clinicians and data scientists might help improve an ML 
model that accurately predicts critical health conditions. 
Clinicians can determine the necessary input features 
both with clinic decisions and statistically, while data sci-
entists can develop the best ML model for this clinic con-
dition. The study aimed to test the input features that can 
be found at all hospital levels for the detection of com-
plicated AA in ML models. Moreover, models developed 
with age, CRP, and PALC input features, along with cli-
nician suggestions, also obtained similar results. As the 
number of similar studies increases and other researchers 
demonstrate the reliability of ML on different data sets 
for AA, such studies can be used in healthcare centers 
with easy-to-use tools.

Many studies showed a strong relationship between 
peripheral blood analysis findings and AA [29, 30]. In 
the present study, there was no significant difference 
between the WBC and platelet counts between the two 
groups. However, there was a significant difference in 
terms of neutrophil count, lymphocyte count, and NLR 

Fig. 2 Performance evaluation metrics of the ML algorithms on test data 1
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between the perforated AA group and the non-perfo-
rated AA group. CRP level is known to be a significant 
marker for almost all inflammatory processes. Moreover, 
it is an important marker for diagnosing AA [31]. In this 
study, CRP level also showed a significant relation with 
perforated AA, and this is consistent with the current 
studies. TB levels were higher in the Perforated AA group 
than in the Non-perforated group, which is supported by 
the current studies [32, 33]. Several studies have shown 
that older age is a risk factor for more complicated AA 
[34, 35]. Comorbid diseases become more common with 
growing age. On the contrary, physiological reserves 
decrease significantly with increasing age. These might 
lead to complications becoming more severe. This study 
also found that age was an independent factor for com-
plicated AA. Thus, scoring systems or ML models should 
include age as a factor during the decision-making 
process.

Many diagnostic tools have been developed for diag-
nosing AA [36–39]. Still, the predictive performances of 
these scores are controversial. Deiters et al. conducted a 
study on 216 elderly AA patients regarding the useful-
ness of the Alvarado score in predicting the severity of 
AA. They reported that The Alvarado score did not dif-
fer in both groups preoperatively [37]. Haak et al. argued 

that both AIR and Alvarado scores have limited capac-
ity to distinguish simple and complicated AA [36]. They 
also found 0.670 and 0.598 AUC values, respectively. In 
the present study, every ML model determined AUC val-
ues more than 0.84. The results indicated the superiority 
of ML models over Alvarado and AIR scores predicting 
complicated AA. Atema et al. have devised two Scoring 
systems for Appendicitis Severity (SAS) that integrate 
radiological findings with clinical and biochemical char-
acteristics: one based on US features (SAS-US) and the 
other based on CT features (SAS-CT) [38]. Sensitivity, 
specificity, PPV, and NPV for US-SAS are 97%, 46%, 42%, 
and 97%, respectively. For the scoring system with CT 
features, SAS-CT, these test features are 90% sensitivity, 
70% specificity, 55% PPV, and 95% NPV. The SAS scoring 
systems have remarkable diagnostic assets, notably high 
sensitivity and negative predictive value, for excluding 
complicated AA. However, scores do not demonstrate 
strong performance in confirming complicated AA. 
This result also emphasizes the importance of radiologi-
cal findings in diagnosing perforated-complicated AA. 
Moreover, both Alvarado and AIR scores contain physi-
cal examination points in the total score. Hence, This 
makes both scoring systems clinician-dependent tools. 
Therefore, this study aims to develop ML tools with 

Fig. 3 Performance evaluation metrics of the ML algorithms on validation data 1
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certain features that might lead to eliminating this condi-
tion and obtaining more standardized results.

It is well-known that findings in ultrasound (US), com-
puterized tomography (CT), and magnetic resonance 
are all important for diagnosing AA. While magnetic 
resonance evaluation is neither common nor useful, 
especially in rural areas, CT and the US are applicable 
in almost every hospital. Hence, we analyzed CT and 
US reports for AppD and PALC. Recent studies showed 
that AppD is important for both simple AA [40] and 
complicated AA [41] diagnoses. The median AppD was 
significantly higher in the perforated AA group, which is 
consistent with recent studies. PALC was observed sig-
nificantly more often in the perforated AA group, and 
this is also supported by the existing literature [40, 42].

Despite advances in surgical techniques and medi-
cal treatments in recent years, complicated appendicitis 
is still a challenge to surgeons. Recently, several studies 
have investigated nonoperative approaches to AA treat-
ment [43, 44]. However, AA surgery still has substantial 
complication rates even for a relatively simpler surgical 
approach. In a large cohort study by Sood et al. from the 
American College of Surgeons National Surgical Data-
base, the Grade III-V complication rate in AA surgery 
was between 2.5 and 5% [45]. The present study had 18 

(1.6%) grade IIIA-IIIB complications, and no periopera-
tive mortality was observed. Although the complication 
rates were lower than in existing studies, complications 
in the perforated AA group were still higher than those 
not perforated in this study. This also supports that pre-
operative diagnosis of more complicated cases might be 
essential for the treatment of AA.

In recent years, many researchers have used ML algo-
rithms to predict AA. Hsieh et al. employed different 
ML algorithms such as SVM, LR, Random Forest, and 
Artificial Neural Networks to diagnose acute appendici-
tis using 16 input features [46]. They reported AUC val-
ues ranging from 77 to 98%. Nevertheless, it is crucial to 
acknowledge that the limited sample size of 180 individu-
als reduces the reliability of their results.

Park et al. used SVM to diagnose acute appendicitis 
[47]. Their data set consists of 760 samples with 10 dif-
ferent input features. The study reported that the AUC 
values ranged from 62.1 to 99.7%. However, although 
ML showed satisfying results in diagnosing AA in their 
cohort, predicting perforated or complicated cases 
remained controversial.

Akmese et al. studied data from the records of 595 
patients for the diagnosis of acute appendicitis [48]. 
The authors used Neural Networks, k–NN, LR, SVM, 

Fig. 4 Performance evaluation metrics of the ML algorithms on test data 2
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Fig. 6 Comparison of the ROC curves of ML algorithms. The x-axis displays the false-positive rates (1-specificity) while the y-axis displays the true-positive 
rates (sensitivity)

 

Fig. 5 Performance evaluation metrics of the ML algorithms on validation data 2
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Random Forest, and Gradient Boosting Tree. Accord-
ing to the study, the Gradient Boosted Tree algorithm 
showed the highest prediction performance at an accu-
racy of 95%. However, the absence of AUC values raises 
concerns regarding the performance of the models.

Mijwil et al. conducted a study using data from the 
records of 625 patients to diagnose acute appendicitis 
[49]. To predict AA, they compare several ML algorithms, 
including LR, SVM, DT, Naive Bayes, Generalized Linear 
Model, Gradient Boosted Tree, and Random Forest. The 
findings of the study show that the accuracy of the algo-
rithms ranges from 64.74 to 83.75%. Nevertheless, simi-
lar to the study of Akmese et al. [48], the authors did not 
report AUC values.

The majority of recent studies have examined ML in 
the diagnosis of AA [46–49]. However, this study mainly 
focused on predicting simple and complicated AA preop-
eratively. In this manner, we investigated the performance 
of the different ML algorithms for predicting simple and 
complicated AA. One of the strengths of this study is that 
the size of the data set is larger than the previous ones. 
These properties allow for a more comprehensive analy-
sis and a better evaluation of the ML algorithms.

This study also has some limitations. First, the retro-
spective design might lead to selection or analytic biases. 
Second, the study cohort was from a single center, which 
could have led to sample homogeneity. Thus, prospective 
multicenter studies are needed to correct this potential 
issue. Finally, the cases that managed non-operatively 
were missing in this study. This might have affected the 
results.

Conclusion
The use of technological developments in clinical prac-
tice is essential in spending less time and convenience 
for healthcare professionals. ML algorithms are an actual 
and developing topic of technological development. Over 
time, it will continue to gain more space in medical sci-
ences. This study showed that the ML algorithm could 
achieve high predictive performance for diagnosing sim-
ple and complicated AA using only a few input features. 
Therefore, it should be discussed in a further large series.
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