
RESEARCH ARTICLE Open Access

Validation of a novel prediction model for
early mortality in adult trauma patients in
three public university hospitals in urban
India
Martin Gerdin1* , Nobhojit Roy1,2,3, Monty Khajanchi4, Vineet Kumar5, Li Felländer-Tsai6, Max Petzold7,8,
Göran Tomson1,9, Johan von Schreeb1 and On behalf of the Towards Improved Trauma Care Outcomes in India (TITCO)

Abstract

Background: Trauma is one of the top threats to population health globally. Several prediction models have been
developed to supplement clinical judgment in trauma care. Whereas most models have been developed in high-income
countries the majority of trauma deaths occur in low- and middle-income countries. Almost 20 % of all global
trauma deaths occur in India alone. The aim of this study was to validate a basic clinical prediction model for use
in urban Indian university hospitals, and to compare it with existing models for use in early trauma care.

Methods: We conducted a prospective cohort study in three hospitals across urban India. The model we aimed
to validate included systolic blood pressure and Glasgow coma scale. We compared this model with three additional
models, which all have been designed for use in bedside trauma care, and two single variable models based on
systolic blood pressure and Glasgow coma scale respectively. The outcome was early mortality, defined as death
within 24 h from the time when vital signs were first measured. We compared the models in terms of discrimination,
calibration, and potential clinical consequences using decision curve analysis. Multiple imputation was used to handle
missing data. Performance measures are reported using their median and inter-quartile range (IQR) across imputed
datasets.

Results: We analysed 4440 patients, out of which 1629 were used as an updating sample and 2811 as a validation
sample. We found no evidence that the basic model that included only systolic blood pressure and Glasgow coma
scale had worse discrimination or potential clinical consequences compared to the other models. A model that also
included heart had better calibration. For the model with systolic blood pressure and Glasgow coma scale the
discrimination in terms of area under the receiver operating characteristics curve was 0.846 (IQR 0.841–0.849).
Calibration measured by estimating a calibration slope was 1.183 (IQR 1.168–1.202). Decision curve analysis
revealed that using this model could potentially result in 45 fewer unnecessary surveys per 100 patients.

Conclusions: A basic clinical prediction model with only two parameters may prove to be a feasible alternative
to more complex models in contexts such as the Indian public university hospitals studied here. We present a
colour-coded chart to further simplify the decision making in early trauma care.
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Background
Trauma is a major threat to global population health, ac-
counting for more deaths than HIV/AIDS, tuberculosis,
malaria, and maternal conditions, combined [1]. The
outcomes of trauma patient are highly dependent on
early appropriate treatment decisions. Therefore numerous
clinical prediction models have been developed to aid and
support clinicians in early trauma care [2–10]. In medicine,
clinical prediction models are used to estimate an individual
patient’s risk of experiencing a specific outcome, often by
combining several patient level parameters in a multivariate
model [11, 12]. Clinical prediction models are intended to
supplement, not replace, clinical judgement by functioning
as decision-support tools [13, 14].
In trauma care prediction models are used for example

to identify patients that need to be referred to a trauma
centre or taken to the intensive care unit. They are also
used to inform on prognosis. Most models designed for
use in trauma care have been developed for specific trauma
patient subgroups, for example patients with traumatic
brain injury, rather than a general trauma population [15].
Furthermore, several models include parameters not always
known on initial presentation in the emergency room, such
as age or injury severity score [8–10, 16]. Also, models
include categorised continuous predictors, for example
systolic blood pressure [8–10, 16], an approach likely to
reduce predictive potential [17].
The majority of clinical prediction models for trauma

care come from high-income countries, whereas over 90 %
of deaths occur in low- and middle-income countries
[18–20]. India, a lower middle-income country accounts
for about 20 % of all global trauma deaths [21]. A signifi-
cant part of these deaths occur in hospitals. In an attempt
to contribute to reduced trauma mortality in Indian hospi-
tals we recently derived a prediction model using data
from three public university hospitals in urban India [22].
The basis for this model was that it should serve all types
of trauma patients, be as simple as possible to be poten-
tially used bedside, and only include vital signs routinely
collected on arrival. The model included only systolic
blood pressure and Glasgow coma scale and the aim of
this study was to validate this model, and to compare it
with existing models for use in early trauma care. We also
compared the performance of the model with systolic
blood pressure and Glasgow coma scale to the predictive
performance of these two vital signs on their own.

Methods
Study design and context
We conducted a temporal validation study as part of a
larger prospective multi-centre observational cohort pro-
ject called Towards Improved Trauma care Outcomes in
India (TITCO). Data from three hospitals were analysed.
Jai Prakash Narayan Apex Trauma Center (JPNATC), All

India Institute of Medical Sciences, New Delhi, has about
180 beds and is a dedicated trauma centre. Lokmanya
Tilak Municipal General Hospital (LTMGH), Mumbai is a
public university hospital. It hosts a dedicated trauma
ward with 14 beds. The Institute of Post-Graduate Medical
Education and Research and Seth Sukhlal Karnani Me-
morial Hospital (IPGMER & SSKM), Kolkata is also a
public university hospital, but lacks a dedicated area for
receiving and managing trauma patients. All included hos-
pitals are referral centres, and hence a large proportion of
patients are transferred from other hospitals. Prehospital
triage is generally not performed in any of these cities.

Models
We recently derived a model for predicting in-hospital
mortality in adult trauma patients within 24 h of the first
recorded vital signs [22]. This model included only sys-
tolic blood pressure and Glasgow coma scale. In the
same study we also assessed a model that in addition to
systolic blood pressure and Glasgow coma scale included
heart rate. These three variables were chosen a priori be-
cause they were the most commonly used in the study
sites. Both systolic blood pressure and heart rate were
modelled using restricted cubic splines to handle potential
non-linear associations between these variables and early
mortality log odds. In the derivation study we found no
significant differences in predictive performance measures
between these two models. The study included 1629 pa-
tients aged ≥15 years with history of trauma arriving at the
three centres described above between October 1, 2013
and January 11, 2014.
We choose to compare the two models outlined above

with models recently published by Kondo et al.[10] and
Perel et al.[8] The model published by Kondo et al. in-
cludes Glasgow coma scale, age, and systolic blood pres-
sure. Perel et al. published one comprehensive model,
also available as an online calculator, and a simple model
available as a colour chart. Like Kondo’s model, Perel’s
simple model included systolic blood pressure, age, and
Glasgow coma scale. Our rationale for using the Kondo
and Perel models as comparisons was firstly that both
have been presented as simply models that can be used
bedside. Secondly, in contrast to most other established
models neither include respiratory rate as a predictor as
respiratory rate has been repeatedly shown to be poorly
collected even in high-income contexts [23, 24].
Kondo’s model was derived and validated using 27 154

patients included in the Japan Trauma Data Bank be-
tween 2004 and 2009. The primary outcome was death
before discharge. Perel’s model was derived using data
from 20 127 patients included in the Clinical Random-
isation of an Antifibrinolytic in Significant Haemorrhage
(CRASH-2) trial, which involved 274 hospitals in 40
countries [25]. The model was then validated using data
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from 14 220 patients from Trauma Audit and Research
Network (TARN). The TARN database primarily includes
patients seen in centres in England and Wales. The pri-
mary outcome was death within 28 days of injury. A de-
tailed account of the Kondo and Perel models are available
in their respective original publications.
Finally, we compared the predictive performance of our

model that included systolic blood pressure and Glasgow
coma scale and each of these two vital signs when used on
their own. This analysis was done to assess the predictive
performance of an even simpler approach then that sug-
gested by our two variable model.

Data
In each of the hospitals in this study one data collector
collected data for 8 h per day through direct observation
of patient resuscitation in the emergency room and data
extraction from patient files. All data collected was part
of routine data collection. The data collector’s role was
to systematically note them down as close to patient ar-
rival as possible. The data collector worked day, evening,
and night duties according to a rotating schedule so that
all possible shifts were covered during the course of a
month. For patients admitted outside of the data collector’s
shift, data were extracted from patient files. Data collectors
followed up on patients for the first 24 h after admittance,
or until discharge or death. Data were uploaded on a
weekly basis and project management had weekly data re-
view meetings. Two on-site quality control sessions were
performed during which a random selection of 1–5 % of
entries were cross-checked with official patient records. No
major deviations were observed.

Eligibility criteria
Patients aged ≥15 years were included if they presented
with history of trauma and were admitted or died be-
tween arrival and admission. Patients with isolated limb
injury, i.e., isolated extremity fractures without vascular
injury, and patients who were dead on arrival were not
included. Patients with isolated extremity fractures are at
the studied centres not part of the general trauma care
pathway but attended to by orthopaedic surgeons alone.

Sample size considerations
We calculated the sample size to enable detection of a
decrease in model discrimination of 0.05 percentage
points with 80 % power, compared to discrimination in
the derivation sample. According to simulation studies,
this required an effective sample size of 200 patients with
the primary outcome, also referred to as events [13, 26].
Hence, the first 200 consecutive events and all non-
events, i.e., patients who survived or were discharged alive
before the first 24 h, occurring during the same time
period as the events were included. These parameters

corresponded to all patients enrolled between January 12,
2014 and July 23, 2014.

Variables
The outcome was early mortality, defined as in-hospital
mortality within 24 h of the time when the first vital signs
were recorded after patient arrival at the study centres.
Five variables were required to apply the four models:
systolic blood pressure (mmHg), heart rate (beats per
minute), Glasgow coma scale and age (years).

Missing data strategy
We used multiple imputation using chained equations to
handle missing data to maximise efficiency under the as-
sumption that data was missing at random. Patterns of
“missingness” and variable distributions were explored
before the imputation model was finalised. Early mortality
was included in the imputation model. Each hospital was
imputed separately, using the same imputation model, and
thereafter combined into a single dataset. The number of
imputed datasets generated was equal to the percentage of
incomplete observations in the hospital with the highest
percentage of incomplete observations [27].

Statistical methods and analyses
We used Stata (Stata: Release 13. StataCorp LP, College
Station, Texas) for statistical analyses. A significance level
of 5 % was used. We calculated 95 % confidence intervals
or the inter quartile range (IQR), defined as the range be-
tween the 25th and 75th percentiles, as applicable. Descrip-
tive statistics were used to analyse and present sample
characteristics. We performed tests individually in each im-
puted dataset and present the results using the median P-
value and IQR across imputed datasets. A median P-value
< 0.05 was deemed as significant.

Step 1: Updating
We conducted our analyses in two steps (Fig. 1). First, we
updated the Kondo and Perel models using the sample
used to derive our basic model with systolic blood pres-
sure and Glasgow coma scale, and the basic model + heart
rate [22]. This sample is henceforth referred to as the up-
dating sample. The updating sample was also used to fit
two simple logit models, one with only Glasgow coma
scale and one with only systolic blood pressure. The latter
was modelled using restricted cubic splines with four
knots placed at equally spaced percentiles. The rationale
for updating the Kondo and Perel models before compar-
ing them with our models was that we aimed to make the
comparison as unbiased as possible. A valid critique of
clinical prediction model studies is that many studies
present new models without considering existing evidence
[28]. Simple updating methods have been proposed as
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means to incorporate existing evidence by adjusting avail-
able models to a new context.
We used a re-estimation method to update the Kondo

and Perel models, meaning that for each model we fitted
a logit model that included the original parameters (for
the Perel model we excluded a parameter indicating
whether the patient received tranexamic acid and a ran-
dom intercept) [28]. Parameters were kept in the model
regardless of their statistical significance upon updating.
To avoid overfitting these models we repeated the estima-
tion process in 300 bootstrap samples drawn with replace-
ment. Each bootstrap model was then used to generate a
linear predictor in the original, not bootstrapped, updating
sample. This linear predictor was used in a logit model
with early mortality as the dependent variable. We then
calculated a linear shrinkage factor as the mean of the co-
efficients of the all linear predictors from each of the 300
bootstrap models. The same approach was applied to the
systolic blood pressure and the Glasgow coma scale
model. This linear shrinkage factor was applied to the final
Kondo, Perel, systolic blood pressure, and Glasgow coma
scale coefficients.

Step 2: Validation and comparison
Once we had updated the Kondo and Perel and fitted
the systolic blood pressure and Glasgow coma scale models
in the updating sample we fitted each of the six models, i.e.,
our basic model with systolic blood pressure and Glasgow
coma scale, our basic model + heart rate, the Kondo, the
Perel model, the systolic blood pressure model, and the
Glasgow coma scale model in the validation sample. We

then assessed and compared the discrimination, calibration,
and net benefit of the basic model with each of the other
models. We measured discrimination using the area under
the receiver operating characteristics curve (AUROCC),
sensitivity, and specificity. The AUROCC is a measure that
ranges between 0 and 1, where 1 indicates perfect discrim-
ination and 0.5 a discrimination as good as chance. We
assessed calibration visually using a calibration plot and sta-
tistically by estimating the calibration slope.
The net benefit was estimated using decision curve

analysis, a method proposed as means to quantify the
clinical implications of using a prediction model [29–31].
The starting point of decision curve analysis is a clinical
scenario. We choose a scenario in which there are several
trauma patients in the trauma receiving area that have
been surveyed. In monitoring the patients, the clinician
may choose to do a repeated survey of everyone, survey
no one, or to use a prediction model to decide whom to
survey. The net benefit at a specific probability of early
mortality, called threshold probability, can be used to esti-
mate the number of patients identified as in need of a re-
peated survey, without the clinician having to do any
unnecessary surveys. This would be a crucial advantage in
context where resources are limited.

Ethical considerations
Ethical clearance was obtained from each of the partici-
pating hospitals. The names of the ethical bodies and
reference numbers were Institute Ethics Committee All
India Institute of Medical Sciences (EC/NP-279/2013
RP-Ol/2013), Ethics Committee of the Staff and Research

Fig. 1 Flow chart outlining the analysis process. In step 1, the models by Kondo et al. and Perel et al. was updated by re-estimation of the original
coefficients using logit regression. Two simple models, one based only on systolic blood pressure and one based only on Glasgow coma scale,
was fitted using logit regression. The basic model with systolic blood pressure and Glasgow coma scale and the basic model + heart rate were
not updated in step 1, as they were derived in a previously published study using the same sample. In step 2, the basic model and the basic
model + heart rate, the updated Kondo and Perel models, and the fitted systolic blood pressure and Glasgow coma scale models were validated
and compared in a temporally independent sample compared to the updating sample. Both the updating and the validation samples were from
the same three hospitals. i [8], ii [10], iii [22]. Abbreviations: GCS Glasgow Coma Scale, HR Heart Rate, Jan January, Jul July, Oct October, SBP
Systolic Blood Pressure
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Society (IEC/11/13), and the Institute of Post-Graduate
Medical Education and Research Research Oversight
Committee (IEC/279) for Jai Prakash Narayan Apex
Trauma Center, Lokmanya Tilak Municipal General
Hospital, and the Institute of Post-Graduate Medical
Education and Research and Seth Sukhlal Karnani
Memorial Hospital respectively. All review boards
granted the study a waiver of informed consent. We ap-
plied for a waiver of informed consent because the pa-
tients included in this study often arrived to hospital
with an altered level of consciousness and in severe
physical and psychological distress, and because this
study only involved the collection of routine data and
did not alter the care provided in any way.

Results
We analysed data from 1629 patients for the updating of
the Kondo and Perel models and the fitting of the sys-
tolic blood pressure and Glasgow coma scale and data
from 2811 patients to validate and compare all six
models (Table 1). In the updating sample the highest
percentage of incomplete observations was 51 % and
hence 51 imputed datasets were generated. For the val-
idation sample corresponding figures were 33 % and 33
imputed datasets. The updating and validation samples
were similar with regards to age, proportion of male pa-
tients, time between injury and arrival at the study centres,
proportion of patients transferred from other centres,
mechanism of injury, as well as initial vital signs. Early
mortality was 6 % in the updating sample and 7 % in the
validation sample.

Step 1: Updating
All parameters included in the original Kondo et al. model
were significant in the updating sample except for age <
60 years (P-value 0.525) (Tables 2 and 3). The median
AUROCC in the updating sample was 0.808 (IQR 0.801–
0.816) and the median calibration slope was 1.046 (IQR
1.022–1.090) (Table 4). In other words, Kondo’s model dis-
criminated adequately between survivors and non-survivors
and was well calibrated in the updating sample. The shrink-
age factor was 0.987, indicating little need for shrinkage be-
fore applying this updated model to a new sample.
Perel et al. modelled age as a cubic term. However, age

was still not significant in the updating sample (P-value
0.768, joint test of all three coefficients being simultan-
eously equal to 0). Both systolic blood pressure, modelled
as a cubic term, and Glasgow coma scale, modelled as a
quadratic term, were significant. The median AUROCC in
the updating sample was 0.844 (IQR 0.835–0.853) and the
median calibration slope was 1.010 (IQR 0.978–1.048). As
with Kondo’s model, these figures indicate that Perel’s
model discriminated and calibrated well in the updating
sample. The shrinkage factor was 0.960.
For the systolic blood pressure model we fitted a sys-

tolic blood pressure model using restricted cubic splines
with four knots. The median AUROCC in the updating
sample was 0.780 (IQR 0.772–0.788) and the median
calibration slope was 1.258 (IQR 1.185–1.280). The
shrinkage factor was 0.969. For the Glasgow coma scale
model we fitted Glasgow coma scale as a linear term.
Median AUROCC was 0.802 (IQR 0.795–0.807), median
calibration slope was 1.198 (IQR 1.166–1.231) and the
shrinkage factor was 1.011.

Table 1 Sample characteristics

Variable Updating cohort (n = 1629) Validation cohort (n = 2811) Fraction of missing data (%)

Age 35 (24–47) 35 (25–46) 0/0

Male % 80 (78–82) 80 (79–82) 0/0

Mechanism of injury % 0/0

Fall 27 (25–29) 26 (25–28)

Railway accident 7 (6–8) 6 (5–7)

Road traffic accident 46 (44–49) 46 (44–47)

Assault 9 (7–10) 11 (9–12)

Burn 6 (5–7) 7 (6–8)

Other 4 (3–5) 5 (4–5)

Delay, time from injury to admission (hours) 7 (2–28) 7 (2–26) 6/4

Transferred % 68 (65–70) 71 (69–72) 0/0

Systolic blood pressure 116 (106–125) 120 (110–130) 20/9

Heart rate 90 (80–98) 89 (80–98) 18/3

Glasgow coma scale 15 (9–15) 15 (9–15) 20/8

24-h mortality % 6 (4–7) 7 (6–8) 0/0

Data is presented as medians with inter quartile range or percentages with 95 % confidence intervals as applicable
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Step 2: Validation and comparison
When applied to a temporally independent sample the
basic model that included only systolic blood pressure and
Glasgow coma scale had a median AUROCC of 0.846
(IQR 0.841–0.849) and a median calibration slope of 1.183

(IQR 1.168–1.202) (Table 4) (Fig. 2). The basic model +
heart rate had a median AUROCC of 0.846 (IQR 0.842–
0.850) and a median calibration slope of 1.126 (IQR
1.105–1.142). Kondo’s model had a median AUROCC of
0.840 (IQR 0.836–0.844) and a median calibration slope of
1.327 (IQR 1.310–1.346) whereas corresponding figures
for Perel’s model were 0.847 (IQR 0.844–0.851) and 1.192
(IQR 1.178–1.215). Hence, these four models both dis-
criminated and calibrated well when applied to the valid-
ation sample.
In contrast, the systolic blood pressure model had a

median AUROCC of 0.681 (IQR 0.676–0.688) and the
median calibration slope was 0.795 (IQR 0.765–0.819).
For the Glasgow coma scale model the median AUROCC
was 0.838 (IQR 0.835–0.842) and the median calibration
slope was 1.476 (IQR 1.449–1.490). These numbers in-
dicate that the systolic blood pressure model had poor
discrimination and overestimated the risk of early mor-
tality in the validation sample, whereas the Glasgow
coma scale model discriminated adequately but under-
estimated the risk of early mortality in the validation
sample. However, a visual inspection of the correspond-
ing calibration plots indicates that for the systolic blood
pressure model the slope misrepresent the calibration
pattern (Fig. 2e). This pattern can be better described
as if the model underestimated the risk for patients
with low and medium risk, whereas it overestimates the
risk in patients with high risk.
The AUROCC of the basic model with systolic blood

pressure and Glasgow coma scale was not significantly
different to that of the basic model + heart rate (median
P-value 0.701, IQR 0.587–0.830), Kondo’s model (median
P-value 0.557, IQR 0.321–0.764), Perel’s model (median
P-value 0.707, IQR 0.313–0.840), or the Glasgow coma
scale model (median P-value 0.359, IQR 0.223–0.533).
The AUROCC of the basic model was significantly better
than that of the systolic blood pressure model (median
P-value <0.001, IQR 0.000–0.000).

Table 2 Outline of models

Model Parameter βa (SE)

Basicb SBP, SBF 1 −0.026 (0.006)

SBP, SBF 2 −0.044 (0.036)

SBP, SBF 3 0.419 (0.244)

GCS −0.228 (0.031)

Intercept 2.302 (0.577)

Basic + HRb SBP, SBF 1 −0.024 (0.008)

SBP, SBF 2 −0.042 (0.038)

SBP, SBF 3 0.378 (0.256)

HR, SBF 1 −0.003 (0.013)

HR, SBF 2 −0.018 (0.121)

HR, SBF 3 0.225 (0.559)

GCS −0.229 (0.032)

Intercept 2.214 (0.662)

Kondo et al. GCS −0.254 (0.030)

Age < 60 years −0.225 (0.354)

SBP < 60 0c

60 ≤ SBP≤ 120 −2.067 (0.525)

SBP > 120 −2.511 (0.585)

Intercept 1.919 (0.616)

Perel et al.d Age −0.067 (0.142)

Age2 0.002 (0.003)

Age3 −1.3·10-5 (<0.001)

SBP 0.019 (0.024)

SBP2 −0.001 (<0.001)

SBP3 2.3·10-6 (<0.001)

GCS −0.679 (0.188)

GCS2 0.024 (0.010)

Intercept 3.678 (2.016)

Systolic blood pressure model SBP, SBF 1 −0.285 (0.030)

SBP, SBF 2 −0.079 (0.247)

SBP, SBF 3 −0.031 (0.006)

Intercept −0.052 (0.033)

Glasgow coma scale model GCS 0.533 (0.222)

Intercept 0.595 (0.460)

Coefficients (β) of all models were estimated in the updating sample
aAfter shrinkage
bAs reported in the derivation study [22]. In the basic and basic + HR models
systolic blood pressure and heart rate were modelled using restricted cubic
splines. cReference. dAge and systolic blood pressure were modelled using
cubic terms whereas Glasgow coma scale was modelled using a quadratic
term. Abbreviations: GCS Glasgow coma scale, HR heart rate,
SBP systolic blood pressure, SBF spline basis function

Table 3 Estimated probability of early mortality per model

Model Updating sample Validation sample

Basic 0.02 (0.01–0.05) 0.01 (0.01–0.04)

Basic + HR 0.02 (0.01–0.05) 0.01 (0.01–0.04)

Kondo et al. 0.02 (0.02–0.06) 0.02 (0.01–0.07)

Perel et al. 0.02 (0.01–0.04) 0.02 (0.01–0.04)

Systolic blood pressure model 0.04 (0.02–0.06) 0.02 (0.02–0.04)

Glasgow coma scale model 0.01 (0.01–0.07) 0.01 (0.01–0.07)

Model estimates are presented as median probabilities of early mortality with
inter quartile ranges. The basic model included only systolic blood pressure
and Glasgow coma scale [22]. The basic + HR model included heart rate in
addition to systolic blood pressure and Glasgow coma scale [22]. Kondo’s
model included Glasgow coma scale, age, and systolic blood pressure [10],
as did Perel’s model [8]. Abbreviations: HR heart rate
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The calibration slope of the basic model was signifi-
cantly worse compared to the calibration slope of the
basic model with heart rate (median P-value < 0.001,
IQR 0.000–0.000). On the other hand it was significantly
better compared to Kondo’s model, the systolic blood
pressure model, and the Glasgow coma scale model (all
median P-values < 0.001, IQR 0.000–0.000). The calibration
slope of the basic model was not significantly different
compared to that of Perel’s model (median P-value 0.200,
IQR 0.054–0.519).
With regards to the potential clinical implications of

applying these models the decision curve analysis re-
vealed very similar curves for the basic model, the basic
model with heart rate, Kondo’s model, and the Perel’s
model (Fig. 3). In interpreting these curves, we see that
using any of the models tested here is superior to the
option of surveying all patients in the range of predicted
probabilities of early mortality 0.05–0.2. Using 0.05 as
the threshold probability we found that the median net
benefit was 0.045 (IQR 0.045–0.046) for the basic model,
0.045 (IQR 0.045–0.045) for the basic model with heart
rate, 0.045 (IQR 0.045–0.045) for Kondo’s model, and
0.046 (IQR 0.045–0.046) for Perel’s model.
These figures can be interpreted as using any of these

models result in a net of five true positives per 100 pa-
tients without increasing the number of false positives, or
compared to using no model 45 fewer false positives per
100 patients. In other words, using a model to decide
whom to do a repeated survey on instead of surveying
everyone would lead to 45 fewer unnecessary surveys per
100 patients. In contrast, the curves for the systolic blood
pressure model and the Glasgow coma scale model devi-
ate substantially from those of the four other models, indi-
cating less positive clinical implications.

Discussion
This study indicated that systolic blood pressure and
Glasgow coma scale could be enough to predict early
mortality in adult trauma patients in three public univer-
sity hospitals in urban India. We found no evidence that
the models published by Kondo and Perel performed

significantly better in terms of discrimination, calibra-
tion, or potential clinical implications compared to a
model that only included systolic blood pressure and
Glasgow coma scale. In contrast to other models a
model with only systolic blood pressure and Glasgow
coma scale does not require the clinician to know vari-
ables such as age [8-10]. This constitutes an important
advantage, as such variables are not always available to
trauma care providers, especially in the early manage-
ment phases. Adding heart rate to the basic model did
significantly improve calibration, but not discrimination
or potential clinical implications.
It is interesting to note that although age is generally

considered to be an important predictor of trauma mor-
tality it was not significant when we re-estimated the co-
efficients of Kondo’s and Perel’s models in our updating
sample. Kondo et al. included age as an indicator vari-
able, where patients aged < 60 years had a lower odds of
early mortality compared to patients aged ≥ 60 years. In
contrast, Perel et al. included age as a cubic term, indi-
cating a higher risk at young and old ages. The reason
why age failed to prove significant in our study may be
that the patients in our cohorts were substantially youn-
ger compared to the patients studied by both Kondo and
Perel. We argue that although age definitely influences
mortality risk and is an important epidemiological tool
the usefulness of such models is limited for example in
the not too uncommon scenario where the patient is un-
conscious and there is no relative present. When this
happens, models that rely only on vital signs can still be
applied.
Hence, we argue that there is scope for a new, simpler,

model that relies only on routinely measured vital signs. A
common criticism of prediction model studies is that they
do not clearly explain how to use the model to estimate
prognosis [2]. Using only two predictors allowed us to cre-
ate a coded chart that can be used to obtain the predicted
probability of early mortality (Fig. 4a, b). Provided appro-
priate cut-offs are identified, the chart can be used to
identify patients in need of a repeated survey. Compared
to more complex models this chart can be used by anyone

Table 4 Selected model performance measures

Model Updating sample Validation sample

SF AUROCC (IQR) CS (IQR) AUROCC (IQR) CS (IQR)

Basic 0.927 0.845 (0.841–0.854) 0.997 (0.955–1.017) 0.846 (0.841–0.849) 1.183 (1.168–1.202)

Basic + HR 0.896 0.848 (0.842–0.857) 0.985 (0.957–1.020) 0.846 (0.842–0.850) 1.126 (1.105–1.142)

Kondo et al. 0.987 0.815 (0.808–0.822) 1.112 (1.062–1.146) 0.842 (0.838–0.846) 1.480 (1.458–1.497)

Perel et al. 0.960 0.844 (0.835–0.853) 1.010 (0.978–1.048) 0.847 (0.844–0.851) 1.192 (1.178–1.215)

SBP 1.011 0.780 (0.772–0.788) 1.258 (1.185–1.280) 0.681 (0.676–0.688) 0.795 (0.765–0.819)

GCS 0.969 0.802 (0.795–0.807) 1.198 (1.166–1.231) 0.838 (0.835–0.842) 1.476 (1.449–1.490)

Abbreviations: AUROCC area under the receiver operating characteristics curve, CS calibration slope, GCS Glasgow coma scale, HR heart rate, IQR inter-quartile range,
SBP systolic blood pressure, SF shrinkage factor
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Fig. 2 a–d. Calibration plots. On the x-axis is predicted probability of early mortality and on the y-axis is observed probability of early mortality
across ten quantiles of predicted early mortality. The dotted line indicates perfect calibration. The solid line indicates a smoothed association between
observed and predicted probability of early mortality and the dashed line a graphical representation of the calibration slope. a Basic model with systolic
blood pressure and Glasgow coma scale [22] b Basic model + heart rate [22] c Model by Kondo et al.[10] d Model by Perel et al.[8] e Systolic blood
pressure model (f) Glasgow coma scale model
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in the trauma receiving area. For the studied context this
was deemed essential.
It was interesting to note the differences between the

two, and three variable models compared to the models
based on singly vital signs. Even though both the systolic
blood pressure and the Glasgow coma scale model dis-
criminated on pair with other published models, calibra-
tion was worse compared to the multivariable models
assessed in this study. Furthermore, the decision curve
analysis clearly shows that single parameter models do
not add much in comparison to the survey all or non
options, and hence fare substantially worse than the
multivariable models in this aspect.
Finally, patients generally arrived late, with a median

time from injury to arrival at the study centres of seven
hours. This is substantially longer compared to other stud-
ies, for example Perel et al. reported a median time from
injury to arrival of two hours [8]. The long time between
injury and arrival to the study centres observed here is
likely a result of patients being taken to other hospitals
first, before they are transferred to a higher level of care.
In fact, around 70 % of patients included in this study
were transferred from other hospitals. Earlier research
from this context indicates that little to no treatment is
initiated in the pre-hospital setting, at least in Mumbai.
Various reasons for transferring patients have been

reported, including lack of space, beds, and the relevant
clinical specialities [32]. Hence, we studied a mix of dir-
ect admission and transferred patients. It was a conscious
decision to include a heterogeneous trauma population as
we wanted a model applicable to any trauma patient arriv-
ing. In comparison, many established models are developed

for a specific trauma population subgroup, such as patients
sustaining road traffic injury, or patients with traumatic
bleeding or traumatic brain injury [7, 8, 16].

Methodological considerations
First, it may be argued that our findings are specific to
the three hospitals included and that the generalisability
of these findings is limited. To some extent this claim is
true. We have not studied external validity in terms of
performance in different settings. Thus, we do not claim
that the model works in other contexts, for example pri-
vate setups or in high-income countries. However, we
would argue that many urban university hospitals at
least in India share the characteristics of the hospitals in
this study and that our findings may be transferred to
such centres.
Next, it is likely that using broad inclusion criteria had

a negative impact on the model’s performance. However,
from a clinical perspective and as outlined above broad
inclusion criteria may strengthen the model’s usefulness
as it can be applied to any trauma patient that arrives to
the studied hospitals. Finally, we used early mortality as
the outcome. Late mortality, functional outcomes, and
quality of life are important trauma care end-points and
should be further studied in the future to fully under-
stand the outcome of trauma care.

Conclusions
We found that a prediction model with only systolic
blood pressure and Glasgow coma scale predicted early
mortality in adult trauma patients in three public univer-
sity hospitals in urban India. This model had adequate

Fig. 3 Decision curves associated with each model. The curves to the right are the same as in the left graph, but separated to better visualise
and help compare curve shape. The basic model included only systolic blood pressure and Glasgow coma scale [22]. The basic + HR model
included heart rate in addition to systolic blood pressure and Glasgow coma scale [22]. Kondo’s model included Glasgow coma scale, age, and
systolic blood pressure [10], as did Perel’s model [8]. The systolic blood pressure model included only systolic blood pressure and the Glasgow
coma scale model included only Glasgow coma scale. Abbreviations: GCS Glasgow Coma Scale, HR Heart Rate, SBP Systolic Blood Pressure
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discrimination, calibration, as well as potential clinical
implications. In contexts where the availability of
skilled staff is limited, most patients are transferred
from other centres, and the trauma patients presenting

constitute a heterogeneous population this simplified
model may prove useful in triaging patients for initial
survey. Because it can be used without performing any
calculation it offers an important advantage to models

Fig. 4 a, b. Simple colour coded charts for obtaining a predicted probability and a triage category based on the basic model with systolic blood
pressure and Glasgow coma scale. b The cutoff is at a predicted probability of 0.05
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that include more variables. Furthermore, as it only in-
cludes vital signs it does not require care providers to
know patient age or injury mechanism, and may hence
be used early in the management and on unconscious
patients.
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