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Abstract

Background: Crowding in the emergency department (ED) has been studied intensively using complicated
non-generic methods that may prove difficult to implement in a clinical setting. This study sought to develop a
generic method to describe and analyse crowding from measurements readily available in the ED and to test the

developed method empirically in a clinical setting.

Methods: We conceptualised a model with ED patient flow divided into separate queues identified by timestamps
for predetermined events. With temporal resolution of 30 min, queue lengths were computed as Q(t+ 1) = Q(t) +
A(t) — D(t), with A(t) = number of arrivals, D(t) = number of departures and t = time interval. Maximum queue
lengths for each shift of each day were found and risks of crowding computed. All tests were performed using
non-parametric methods. The method was applied in the ED of Aarhus University Hospital, Denmark utilising an
open cohort design with prospectively collected data from a one-year observation period.

Results: By employing the timestamps already assigned to the patients while in the ED, a generic queuing model
can be computed from which crowding can be described and analysed in detail. Depending on availability of data,
the model can be extended to include several queues increasing the level of information. When applying the
method empirically, 41,693 patients were included. The studied ED had a high risk of bed occupancy rising above
100 % during day and evening shift, especially on weekdays. Further, a ‘carry over' effect was shown between shifts

and days.

Conclusions: The presented method offers an easy and generic way to get detailed insight into the dynamics of

crowding in an ED.
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Background
Crowding is a major health concern and an increasing
problem for Emergency Departments (EDs) internation-
ally [1-3]. Crowding is defined as a situation where
treatment demands exceed available resources and is as-
sociated with increased mortality, increased treatment
costs and over-all reduced quality of care [4-8].
Crowding can be conceptualised as a model of patient
flow, which incorporates factors that influence on or are
affected by crowding [9]. Any such model can be classi-
fied on a continuum from high generalisability with ab-
stract information outputs (i.e. “level 1”) to highly
specific with low generalisability (ie. “level 4”) [10].
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When developing a new model, researchers should
acknowledge at which level they want their model to
operate; balancing the need for application in various
settings (level 1) against the need for a model draw-
ing very specific conclusions (level 4). A simple gen-
eric method for evaluation of crowding that allows
easy implementation into various EDs is in high de-
mand [11-13].

The aim of this study was to develop a method that
meets the criteria for an ideal universal measure for
crowding being generalisable in measurement, definition
and validity as described by Dr. Pines [14]. The proposed
method was tested empirically in a clinical setting.
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Methods

Study design and population

An emergency department (ED) has been defined as a
hospital department accessible to patients with medical
emergencies staffed by multidisciplinary clinical
personnel ready to provide immediate stabilisation and
care [15]. The processes that a patient must undergo
from the time of arrival to departure characterise patient
flow in the ED [9]. We defined a patient as being present
in the ED from the time of electronic registration at the
front desk (arrival) to the time of electronic registration
of departure from the ED unit.

Since this study aimed at developing a generic method
using readily available data to describe crowding we
started by setting up a model of the ED depending only
on the two most reliable timestamps: time of arrival and
time of departure. This “black box” model has one queue
representing ED census at a given time (Fig. 1a).

From the patient flow data, we created an aggregate
data set by dividing the study period into intervals of
30 min and counting the number of arrivals A(t) and de-
partures D(t) in each interval t (Table 1). From the num-
ber of arrivals and departures in each interval, the queue
length at the beginning of the next interval could be cal-
culated as: Q(t+1)=Q(t) + A(t) — D(t), using Q(0)=0
(the initial queue length).

For every shift (day, evening and night) of each day in
the study period the maximum queue (max queue)
length was found. Days were defined as beginning by the
day shift at 7 am. with every shift lasting eight hours,
thus reflecting the clinical setting. To allow for steady
state in the queuing system, all analysis of queues were
made discarding the first 24-h, ie. the first three shifts,
of the study period.

To explore possible extensions of the model, thus in-
creasing the level of information on throughput pro-
cesses, we conceptualised an idealised patient flow by
dividing the stay in the ED into four queues based on
clinical relevance and structural challenges: A queue
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between arrival and start of initial assessment by an ED-
nurse (Q1), a queue before evaluation by a doctor (Q2),
a queue before completion of examination and treat-
ment in the ED (Q3) and finally a queue arising for pa-
tients who are waiting to leave the ED (Q4). With few
exceptions, e.g. trauma call patients, every patient pre-
senting in the ED would go through these steps in that
exact order. This is in line with the conceptual model
proposed by Asplin and colleagues for ED throughput
[9]. Since it was not possible to get verbatim timestamps
for some of these factors (i.e. start of initial assessment,
first evaluation by a doctor and completion of treat-
ment), a number of surrogate-markers were decided
upon: time of first triage, first re-assessment of vital
signs “TOKS” value (a Danish early warning system
based on systematic assessment of vital signs [16]) and
last TOKS value. Figure 1b offers a graphical representa-
tion of this model.

In applying the method we used an open cohort design
with prospectively collected data on every patient pre-
senting to the ED from January 1** to December 31*
2013. The number of arrivals during the study period
determined the sample size and patients were followed
from ED admission to ED discharge as registered in the
Electronic Health Records (EHR). EHR contains patient
administrative data (e.g. age, gender, time of admission
and discharge) and clinical patient data (e.g. triage score
and diagnosis code). Utilising the “black-box” model for
patient flow we computed the aggregate data set (N =
17,520) and max queue length for each shift (3) of each
day (365, i.e. 3 * 365 values of max queues). Likewise,
queue lengths for each of the four queues in the ex-
tended model of idealised patient flow in the ED were
calculated for each day and shift (i.e. 4 * 3 * 365 values
of max queues).

Study site
We applied the method to the ED at Aarhus University
Hospital, Denmark. The hospital had an uptake area of
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Fig. 1 Conceptual models for the patient flow through the ED. a A simplified “black box” model of the patient flow to and from the ED depending
only on time of arrival and departure. b By utilising surrogate-markers queues representing patients waiting on start of examination (Q1, waiting on tri-
age), evaluation by a doctor (Q2, waiting on first TOKS), completion of examination/treatment in the ED (Q3, waiting on last TOKS) and leaving the ED
(Q4) were proposed. All but a few patients in the ED would follow this flow in that exact order. Abbreviations: arr, arrivals; tri, triage; to1 first TOKS; tol,
last TOKS; dep, departure, Q, queue
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Table 1 Variables obtained for each patient in each 30-min interval
Obtained data

Aggregated data set, 30-min intervals
Age Mean age of patients present in the ED
Sex

Time of arrival to ED Number of patients waiting to be examined (Q1)
Time of triage
Time of first TOKS

Time of last TOKS

Number of patients waiting to be evaluated by a doctor (Q2)

Number of patients waiting to have completed examination/treatment (Q3)
Number of patients waiting to leave the ED (Q4)

Time of departure from ED

Triage score Number of patients in the ED triaged red

First TOKS score
Last TOKS score

Diagnosis

Number of trauma patients in the ED

Variables obtained from EHR for each patient registered in the ED in 2013 (left). From these variables an aggregated data set was compiled for 30-min. intervals
calculating number of patients in each queue and number of trauma patients as well as patients triaged red (right). See also Fig. 1
Abbrevations: ED emergency department, Q queue, TOKS a Danish early warning system (see text for further explanation)

about 300,000 people and a census of approximately
70,000 annually divided on several units. The ED unit
under study received about 40,000 patients in total di-
vided on orthopaedic injuries, trauma patients and un-
stable medical patients. Other surgical patients and
patients with medical conditions were also received al-
though not exclusively in this unit. Some patient cat-
egories (including medical paediatric patients, patients
with psychiatric emergencies and patients with heart re-
lated events) were not attended to in the studied ED but
were transferred to specialised departments. Patients
were either treated and discharged or admitted to the hos-
pital. Physicians working in the ED had the right to admit
patients to an appropriate inpatient bed, but in case of
bed shortage on the wards, patients could be found board-
ing in the ED. Boarding time could not be defined since

decision to admit were not registered. Unique department
and location codes were used to record time of arrival and
discharge from the studied ED unit. Hereinafter, the
studied ED unit will be referred to simply as “the ED”.
The ED used Danish Emergency Process Triage
(DEPT) for triaging patients on a five-point ordinal scale
(1-5, 1, i.e. “red”, being the most acute) [17]. The cap-
acity of the ED depends on available resources (i.e. num-
ber of nurses on duty according to the duty roster and
number of available beds). Bed capacity in the ED was
19 with additionally two beds reserved for trauma pa-
tients (Table 2). On day and evening shifts, seven to
eight nurses were on duty. On night shift four and five,
nurses were on duty in weekdays and weekends respect-
ively (Friday and Saturday night shifts were defined as
weekend nights). When a trauma patient arrived at the

Table 2 Characteristics of the emergency department and the patients

Weekday (%) Weekend (%) Total (%)
Arrivals to the ED, 2013 29,715 11,978 41,693
Trauma 432 (145) 189 (1.58) 621 (1.49)
Triaged red 338 (1.14) 150 (1.25) 488 (1.17)
Female 13,848 (46.60) 5377 (44.89) 19,225 (46.11)
Age < 18 years old 7239 (24.36) 2682 (22.39) 9921 (23.36)
Age > 65 years old 5383 (18.12) 1866 (15.58) 7249 (17.39)
Length of stay <30 min - - 1120 (2.69)
Length of stay 25 h - - 2282 (547)
Number of beds * - - 19
On-duty nurses 7-1159 am: 7 7-10.59 am: 7
12-07.59 pm: 8 11 am-07.59 pm: 8
8-10.59 pm: 7 08-10.59 pm: 7
11 pm-6.59 am: 4 11 pm-6.59 am: 5

Friday and Saturday nights were considered part of the weekend
@ The ED unit has two additional beds reserved for trauma call patients
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ED, one to three nurses would be allocated to this pa-
tient thus lowering the nurse-capacity in the remaining
ED. At times of special need one nurse could be trans-
ferred to the ED to increase the nurse-capacity though
no formal staffing policy for this was in place.

Statistical methods

Due to highly skewed distributions, we used non-
parametric statistical methods to evaluate queue lengths:
Kruskal-Wallis rank sum test to compare the distribu-
tions of the maximum daily queue length in each of the
three shifts and between weekday and weekends and
Spearman’s rank sum correlation test (Spearman’s rho)
to evaluate correlations between maximum queue
lengths in successive shifts. We applied Fisher’s index of
dispersion to evaluate Poisson distribution of the data.
Data management and statistics were done using R, ver-
sion 3.1.2 (R Foundation for Statistical Computing,
Vienna, Austria).

Results

From the timestamps of arrivals and departures a simple
method could be set up and risk of crowding and its
predictors computed. It was possible to extend the
model by separating the patient flow in the ED into clin-
ically meaningful queues allowing for increased level of
information. All codes necessary for the data manage-
ment and analyses presented including an example data
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set are freely available (see section Availability of data
and materials).

We tested the proposed method empirically on the
“black box” model: A total of 41,693 arrivals were regis-
tered in the ED during the study period (Table 2). About
70 % of all arrivals happened on weekdays. Of all visits,
2.7 % (1120/41,693) spend 30 min or less in the ED and
5.5 % (2282/41,693) spend more than 5 h in the ED. Fig-
ure 2 offers detailed insights into the queue dynamics, il-
lustrated by a queue of 42 patients, which arose on
November 18th 2013. On this day the longest queue
during the study period was observed, but any days of
interest could have been chosen. The figure permits dir-
ect temporal observation of the queue length and its re-
lation to the number of arrivals and departures
indicating whether the queue length grows due to exter-
nal or internal processes. If a fall in departures precedes
prolongation of the queue length we expect internal pro-
cesses (i.e. throughput) slowing down to be the main
driver of the queue length. Conversely, a steep rise in ar-
rivals (i.e. input) preceding a prolonged queue indicates
external processes to be the driver of the queue length.
It is always interplay between input, throughput and out-
put, but in the example given in Fig. 2 external processes
- i.e. the number of arrivals - appears to be the main
driver of the queue length. The distributions of the num-
ber of arrivals and the queue lengths are shown in Fig. 3.
These distributions could not be described by Poisson
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Fig. 2 Time series plot offering insight on the queue dynamics. Arrivals (green line), departures (blue line) and the resulting queue (black line)
summarised every 30 min (dots mark the beginning of an interval) for consecutive days. The red area marks 100 % bed occupancy or more. The
maximum queue length registered was 42 on the 18th of November. No trauma patients arrived this day and the first patient triaged red were
registered around 830 p.m. It does not seem to be a decrease in departures (i.e. due to prolongation of handling of patients in the queue) rather
an increase in arrivals (i.e. external processes) that drives the queue length in this case
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distributions since Fisher’s index of dispersion consist-
ently showed over-dispersion, indicating negative bino-
mial distributions would be a better fit. The distribution
of max queues on weekdays vs. weekends and the three
shifts differed significantly with Kruskall-Wallis: p <
0.0001 for both. On weekdays in day and evening shift
the risk that the queue would grow to and above the
maximum bed capacity at least once during the shift was
more than 50 % (Fig. 4). On weekends this risk dropped
to 21 and 27 % respectively. In night shifts the risk
plummeted to around 1 % disregarding weekday/week-
end. Seasonality (summer: April - September) was ob-
served (Kruskall-Wallis: p =0.0233), but only conveyed
minor changes in risk of reaching a 100 % bed capacity
when stratified for (e.g. the risk on weekday day shift
were 54 % overall and 58 % and 50 % summer and win-
ter respectively). The absolute number of times with
crowding can be inferred from the percentages given in
Fig. 4. Likewise, this frequency can be visualised with
modifications to Fig. 2.

When restricting the analysis to include the observed
max queue for each day and each shift, it was found that
the median queue length was 20 patients with an

interquartile range (IQR) of 8.00 patients on weekdays
day and evening shifts, and 7 (IQR = 5.00) patients in the
night (Table 3). On weekends the shift medians were 15
(IQR =6.00), 18 (IQR =6.00) and 9 (IQR = 4.25) patients
respectively. This gives a median patient-to-nurse ratio
of 2.9 in day shifts on weekdays as the maximum and
1.8 on night shifts as the minimum ratio detected.

Max queue lengths in day shifts were found to correl-
ate positively with max queue lengths the following
evening shifts (p =0.67, p <0.0001) (Fig. 5). This rela-
tionship - a ‘carry over’ effect of queue length between
shifts - also applied to evening and night shifts (p = 0.20,
p <0.0001), however, it did not apply to night and the
following day shifts (p=-0.02, p=0.65). Max queue
lengths of one day correlated positively with max queue
lengths the following day (p = 0.24, p < 0.0001).

Unfortunately, in the explorative phase of the project
it became clear that triage and TOKS data could not be
retrieved for a large proportion of patients. For instance,
all but arrival and departure registrations were missing
in 71 % of the patients (Fig. 6). Thus, the above-
presented calculations could not be repeated for the ex-
tended model. In an ED with data that supports this
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model each of the four queues could be analysed in a
similar manner.

Discussion

The main purpose of our study was to develop a generic
method to describe and estimate crowding in an ED. By
utilising only time of arrival and time of departure it was
possible to get detailed insight into the dynamics of the
queue and the resulting crowding in the ED. Since the
method only relies on timestamps and patient census, it
is the question at hand and data availability that sets the
limit to the practical implementation of the method: A
finer temporal resolution can be chosen, other time
stamps can be used to define the queue of interest and
several queues be combined to elaborate on the queues
during patient flow (e.g. Fig. 1b). Likewise, the max

Table 3 Characteristics of maximum queue lengths per day in 2013

queue can be related to one or more groups of staff in
the ED and/or to patients of interest. We encourage fel-
low researchers to build on and modify the program-
ming code for the method to suit the research question
at hand.

The max queues represent the 30-min time period of
each shift on each day with most patients in the ED. The
interpretation is exemplified by the empirical cumulative
distribution function (Fig. 4): It expresses the risk of at
least one interval with a given queue length. Similarly,
the positive correlation of max queues between shifts
following each other means that, if the maximum queue
during a shift was long, it was likely that a long queue
would arise at least once during the following shift.
When analysing crowding we are interested in what hap-
pens at times with prolonged queues. The observations

% of time with 219 patients Min Max Median (IQR) Median patient/nurse ratio
Day shift (7 am-02.59 pm) Weekday 54 9% 8 42 20 (8.00) 2.9 (2.5 when 8 nurses)
Weekend 21 % 6 30 15 (6.00) 2.1 (1.9 when 8 nurses)
Evening shift (3 pm-10.59 pm) Weekday 56 % 9 38 20 (8.00) 2.5 (2.9 when 7 nurses)
Weekend 27 % 9 30 18 (6.00) 2.1 (24 when 7 nurses)
Night shift (11 pm-6.59 am) Weekday <1 % 1 20 7 (5.00) 1.8
Weekend <1 % 3 22 9 (4.25) 18

Characteristics of max queues and the median patient/nurse ratio computed from this. When observations were restricted to the time of each day and shift with
the highest patient load there were considerable differences in the patient pr. nurse ratio. Friday and Saturday night were considered part of the weekend

Abbreviation: IQR interquartile range
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Arrivals, day one

plotting. Queue lengths correlated between shifts except for between night and day shift. Queue lengths also correlated between days (24-h)
following each other. a Maximum queue on day and the following evening shift, Spearman’s rank correlation rho = 0.67, p-value < 2.2e-16. b
Maximum queue on evening and the following night shift, Spearman’s rank correlation rho = 0.20, p-value = 0.0001. ¢ Maximum queue on night
and the following day shift, Spearman’s rank correlation rho = —0.02, p-value = 0.6496. d Arrivals on days following each other, Spearman’s rank

correlation rho =0.23, p-value = 7.498e-06

with minor queues can be thought of as noise to the signal
of interest. On the other hand if only observations with
queue lengths above a certain threshold were chosen, vari-
ation would be lost and with it our ability to make infer-
ences. To the knowledge of the authors, no other research
has been done on maximum queues in the ED.

Crowding has been measured in a number of ways
ranging from subjective assessment by ED staff [18]
to objective measurements [19-24] and combinations
of the two [12, 15]. To add to this, the threshold de-
fining when crowding occurs is absolute in some
studies [15, 19-21] using objective measurements for
crowding and relative in others [24]. When crowding
is defined subjectively the external generalisability
should be questioned: What is perceived as crowding

in one ED might be considered otherwise in another
[25-27]. Objective definitions however, can be criti-
cised for oversimplifying a complex interplay between
numerous factors [9]. When the threshold for crowd-
ing is relative it is inevitable that crowding will occur
a set percentage of the time, disregarding that the ED
might never reach full bed capacity, experience the
adverse effects of crowding etc. This limits possible
research questions to concern effects of “above-nor-
mal” number of patients in the ED. Finally, dynamic
measurement of crowding (i.e. several measurements
during a patient’s stay in the ED) is preferable to a
static measurement (i.e. a single measurement e.g.
when arriving at the ED) [24]. Methods requiring
highly detailed administrative data and/or specialised
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Fig. 6 Examination of the empirical patient flow. Arrows indicates patient flow going from a timestamp to a queue. 41,693 patients arrived at the
ED. Of these 11,742 (28.2 %) patients got a triage score registered, 338 (0.8 %) patients did not get a triage score but did get a first TOKS score,
and 29,613 (71.0 %) patients had neither triage nor TOKS values registered. Of the 11,742 patients that did get a triage score 4690 also got a first
TOKS score. Thus, a total of 5028 (12.1 %) patients had a registered value for first TOKS. Only 3926 (9.4 %) patients had a registered value for all

triage; to1, first TOKS; tol, last TOKS; dep, departure; Q, queue

the factors in the idealised model for the patient flow. It was therefore decided to do the further analysis on the “black box" model with only
arrival and departure as factors, until better completeness of the data could be obtained. Abbreviations: n, number of patients; arr, arrivals; tri,

insight into statistical programming are seldom imple-
mented in a clinical setting, are found to have low
external validity and are not found to be superior to
ED occupancy level in describing crowding [11, 13,
21, 28-30]. Likewise, if a method relies on specific
assumptions about data, researchers must ensure that
such assumptions are met before implementing the
method. Failing to do so could result in deceptive
conclusions. As an example, we found that arrivals
did not follow a Poisson distribution, but rather a
negative binominal distribution. This is in opposition
to what is assumed in many studies on ED crowding
[23, 24, 31] and could render such methods error-
prone in our setting. Therefore, we sought to develop
a novel method for quantifying crowding in an ED
from simple and readily available parameters with oc-
cupancy level as a central measurement of crowding
and a temporal resolution of 30-min.

One example of direct actions based on our proposed
method is the ability to anticipate crowding: If the max
queue in a day shift is long the ‘carry over’ effect mean that
a long queue are likely to arise during the following evening
shift. This will allow interventions to counter crowding be-
fore it arises. Such prediction tool could be implemented
and evaluated using the Plan-Do-Study-Act tool [32].

Some limitations must be addressed. Arrival and depart-
ure time were recorded for every patient in the study and
are generally considered very accurate, and possible errors
in these timestamps were most likely random. If they were
systematic, e.g. if at busy times the arrivals were systematic-
ally collected and registered with delay all at the same time,
it could seriously bias the findings towards longer queues.
Other indicators of flow were considered, amongst others
time of diagnosis, time of first medicine prescription, time
of ordering of x-ray and time of ordering blood tests. All of

these were found to be particularly liable to “measurement”
bias in that they would very often, and depending on the in-
dividual doctor, be registered later than actually effectuated,
and were thus rejected. As with any standardised analysis
model, this is an approximation of real life allowing a de-
tailed overview of the system. Although very few assump-
tions are necessary with this method, complex
organisational and psychological interactions between the
factors are likely to play important roles in an ED; not least
in times with crowding [33]. Such interactions have not
been taken into account.

For the results of applying the method, it must be noted
that EHR is a secondary data source primarily for clinical
use. Since the data collection is not under the control of
the researchers the quality of EHR data for research can be
questioned [34]. On the other hand, the fact that data were
collected as part of the clinical work without this research
project in mind could be argued to lower the risk of intro-
ducing selection and/or information bias and thus
strengthen the validity of the results. Further, the number
of nurses on duty was derived from the duty roster and not
the actual number of nurses meeting in each shift of each
day. These numbers could differ e.g. due to illness. With a
study period of one year we found it not to be feasible to
allow for such variations but if investigating shorter periods
of time this could be an option to strengthen the internal
validity of the results. Finally, only the nurse capacity was
included in the presented results leaving other valuable re-
sources in the ED - such as doctors - unaccounted for. We
encourage future research to focus on the possibility to ex-
tend the method to include several sub-queues (e.g. as pro-
posed in Fig. 1b) and to explore the method in a
multicentre trial.

In summary, building on the recommendations for dy-
namic measurement of crowding put forth by McCarthy
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et al. [24] we present a highly generic method relating ED
capacity (beds and nurses) to dynamically measured ED
census, setting no threshold for crowding. Our model is
highly generalisable and easy to implement in diverse
settings.

Conclusion

We put forward a generic method for evaluating crowd-
ing in an ED from readily available data. This allows for
detailed analysis of crowding: its impact and associations
in any specified ED. It offers insight on the dynamics of
crowding and allows for further investigation of predic-
tors of crowding.
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