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Abstract

Background: Computed tomography (CT) is associated with a risk of cancer development. Strategies to reduce
radiation doses vary between centers. We compared radiation doses of CT brain studies between pediatric and
general emergency departments (EDs), and determine the proportion studies performed within the reference levels
recommended by the International Commission on Radiological Protection (ICRP).

Methods: A retrospective review was carried out in a healthcare network consisting of one pediatric ED and three
general hospital EDs. Pediatric patients less than 16 years old with CT brain studies performed between 1 January
2015 and 31 December 2018 were included. Information on demographic, diagnosis, volume-averaged computed-
tomography dose index and dose length product (DLP) were collected. Effective dose was then calculated from
DLP using conversion factors, termed k-coefficients which were derived using a 16 cm head CT dose phantom.

Results: Four hundred and seventy-nine CT brain studies were performed – 379 (79.1%) at the pediatric ED. Seizure
(149, 31.1%), head injury (147, 30.7%) and altered mental status (44, 9.2%) were the top three ED diagnoses. The
median effective dose estimates were higher in general than pediatric EDs, particularly for those aged > 3 to ≤6
years old [1.57 mSv (IQR 1.42–1.79) versus 1.93 mSv (IQR 1.51–2.28), p = 0.047], > 6 to ≤10 years old [1.43 mSv (IQR
1.27–1.67) versus 1.94 mSv (IQR 1.61–2.59), p = 0.002) and > 10 years old (1.68 mSv (IQR 1.32–1.72) versus 2.03 mSv
(IQR 1.58–2.88), p < 0.001). Overall, 233 (48.6%) and 13 (2.7%) studies were within the reference levels recommended
by ICRP 60 and 103 respectively.

Conclusions: Radiation doses for CT brain studies were significantly higher at general EDs and less than half of the
studies were within the reference levels recommended by ICRP. The development of diagnostic reference levels
(DRLs) as a benchmark and clinical justification for performing CT studies can help reduce the radiation risks in the
pediatric population.
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Background
Computed tomography (CT) is a valuable diagnostic tool
in the Emergency Department (ED) [1]. However, it in-
volves the use of ionizing radiation at much higher doses
as compared to other diagnostic imaging tests such as x-
rays [2]. Given the increased utilisation of CT in recent
years, concerns have therefore been raised about the po-
tential for developing malignancies resulting from expos-
ure to ionizing radiation during CT studies [1, 3–5]. The
pediatric population is particularly susceptible due to
their radiosensitive organ tissues and long lifespan after
radiation exposure, with an increased incidence of
radiation-induced cancers such as leukaemia and brain
tumours [1, 6–15].
Previously, radiation doses were similar for pediatric

and adult CT techniques – despite the smaller body
habitus and increased radiosensitivity of children [16].
Recommendations for reducing ionizing radiation
dose for pediatric patients started to emerge in the
early 2000s, led by the “As Low As Reasonably
Achievable” and “Image Gently” campaigns to raise
awareness about the risks associated with CT studies
and propose protocols to reduce the radiation dose
for children [13, 16–19]. However, literature on
pediatric multi-slice CT studies reported an effective
dose of about 4 mSv for CT brain examinations, as
opposed to an effective dose of 1 to 2 mSv in adults,
suggesting that a gap still exists in clinical practice
[20, 21]. In addition, effective doses in pediatric CT
head studies can vary across healthcare facilities, par-
ticularly between institutions with dedicated pediatric
services and those without [22–28]. Reasons for such
disparities include inappropriate clinical justification;
patient-related attributes like size, weight, motion,
and complexity of medical condition; as well as tech-
nical factors like a CT scanner’s acquisition parame-
ters, and the level of training or experience of the CT
technologist and radiologist [23, 29]. As such, there is
a continual need to push for appropriate justification
of pediatric CT studies with optimisation of radiation
dose used [30, 31].
To this end, a landmark development was when the

American Association of Physicists in Medicine (AAPM)
established the size-specific dose estimate (SSDE) which
takes into consideration the patient’s size, and allows for
optimisation of radiation dose without sacrificing image
quality [32–34]. Also, the International Commission on
Radiological Protection (ICRP) has since updated its age
and region-specific effective dose limits from the previ-
ous 1990 Publication 60 recommendations to the
current 2007 Publication 103, based on the latest avail-
able scientific information of the biology and physics of
radiation exposure [35, 36]. Finally, the establishment of
a CT dose diagnostic reference level (DRL), defined as a

radiation dose level to identify situations where the pa-
tient dose or administered activity is unusually high, fur-
ther helps with dose optimisation [37]. In healthcare
practices, DRLs help prevent radiation exposures that do
not provide additional information for patient clinical
management [38]. They also help guide radiology de-
partments review their practices when patient doses sig-
nificantly deviate from the DRL, and allow comparisons
between institutions for quality control purposes. At the
time of writing, there is no established national or local
DRL guidance for pediatric CT head examinations in
Singapore.
Therefore, our primary objective was to compare radi-

ation doses used for pediatric CT brain studies between
pediatric and general EDs of a healthcare network in
Singapore, and determine the proportion of CT brain
studies performed within the reference level recom-
mended by ICRP [35, 36, 39]. (Supplementary Materials).
Our secondary objective was to propose a DRL for
pediatric CT brain studies performed in the EDs. We
hypothesize that for pediatric CT brain studies, the me-
dian effective radiation dose administered in general EDs
is higher compared to the pediatric ED, and a greater
proportion of CT studies is within ICRP 60 and 103 rec-
ommendations at pediatric than general EDs. The find-
ings from this work can drive quality improvement
initiatives and ultimately, it is about making CT imaging
safe for every pediatric patient in the ED.

Methods
Study setting
The public healthcare institutions in Singapore are di-
vided into three healthcare networks, with each serving
a specific geographical location. Our healthcare network
is the largest and consists of (1) a pediatric tertiary hos-
pital with a pediatric ED and both inpatient and out-
patient pediatric services; (2) three adult tertiary
hospitals with general EDs and no inpatient or out-
patient pediatric service. The pediatric ED is staffed by
pediatric emergency physicians while the general EDs
are staffed by emergency physicians who have variable
experience in pediatric emergency care.

Study design
A retrospective study was carried out involving pediatric
patients, defined by age less than 16 years old, who
attended the EDs from 1 January 2015 to 31 December
2018 and had a CT brain study performed. Data was col-
lected using a standardized form by assessing the elec-
tronic medical records of the ED visit. Information on
demographic, diagnosis and radiation dose in terms of
volume-averaged computed-tomography dose index
(CTDIvol) and dose length product (DLP) were obtained
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and analysed. All CT brain studies will be analysed, in-
cluding those repeated in the same ED visit.
This study was approved by Institutional Review Board

at SingHealth, with waiver of informed consent.

CT scanner parameters
Across all EDs, CT brain studies were performed using
one of the following three CT scanners: Toshiba Aqui-
lion (Toshiba Medical Systems, Tokyo, Japan), Toshiba
Aquilion Prime (Toshiba Medical Systems, Tokyo,
Japan) or Siemens Somatom Force (Siemens Healthcare,
Germany).

Radiation dose parameters
Dose indicators of CTDIvol and DLP were obtained.
CTDIvol reflects the mean absorbed radiation within the
scan volume based upon standardized CTDI phantoms.
For CT brain studies, CTDI quantification is based on a
16 cm diameter Plexiglas phantom [21]. DLP, deter-
mined by multiplying the CTDIvol (in mGy) by scan
length (in cm), is a measure of a CT scanner’s radiation
output/exposure along a patient’s long axis (in mGy-cm)
and provides an estimate of the total energy delivered to
the CTDI Plexiglas phantom – consequently, the scan
length may be estimated by dividing the DLP by the
CTDIvol [21].
Effective dose, in mSv, was calculated from DLP by

multiplying DLP with age- and region-specific conver-
sion factors, termed k-coefficients (in mSv/(mGy-cm)),
recommended by the ICRP 60 and 103 [35, 36, 39].
(Supplementary Materials).

Data analysis
SPSS version 22 (SPSS, Chicago, IL) was used to perform
statistical analysis. Frequencies with percentages were
used to present categorical data. Mean ± standard devi-
ation (SD) or median (interquartile range, IQR) was used
for continuous data depending on normality. Patients
were classified into the following five age-group categor-
ies – ≤6 months, > 6 months to ≤3 years, > 3 years to ≤6
years, > 6 years to ≤10 years, > 10 years – to compare
their effective doses and with the reference levels recom-
mended by ICRP. Chi-square test or Fisher’s exact test
was used for association between categorical data. Stu-
dent’s t-test or Mann-Whitney U test was used for asso-
ciation between continuous data depending on
normality. Statistical significance was taken at p less
than 0.050.

Results
Demographics
A total of 479 pediatric patients had CT brain studies
performed over the study period – 379 (79.1%) in the
pediatric ED and 100 (20.9%) in the three general EDs.

All of the CT brain studies were non-contrasted. There
was no patient with multiple CT brain studies in a single
ED visit. The median age of the patients across the four
EDs was 7 years (IQR 3 to 12) and there were 290
(60.5%) males. Seizure (149, 31.1%), head injury (147,
30.7%) and altered mental status (44, 9.2%) were the top
three ED diagnoses for patients requiring CT brain stud-
ies in the EDs (Table 1).

CTDIvol, DLP and effective dose for CT brain studies
Table 2 shows the parameters of the CT scanners used
at the pediatric and general EDs.
There were significant differences in both median

CTDIvol and DLP between the pediatric ED and general
EDs in the > 3 to ≤6 years, > 6 to ≤10 years and > 10 years
age groups. (Supplementary Materials) The median ef-
fective dose for all CT brain studies was 1.68 mSv (IQR
1.43 to 2.10 mSv) which was slightly more than half a
year’s worth of background radiation exposure in the
United States (3.1 mSv/year) [40]. Across all age groups,
there was a trend towards greater median effective doses
for CT brain studies performed in the general EDs as
compared to the pediatric ED. In particular, significant
differences in the CT brain median effective doses were
found in the > 3 to ≤6 years (p = 0.047), > 6 to ≤10 years
(p = 0.002) and > 10 years (p < 0.001) age groups
(Table 3).

Proportion of CT brain studies with effective doses within
the reference levels recommended by ICRP 60 and 103
Two hundred and thirty-three (48.6%) of all the CT
brain studies done across both pediatric and general EDs
fell within the reference levels recommended by ICRP
60. The proportion is significantly higher in the pediatric
ED where 216 (45.1%) were within ICRP 60 definition,
compared to 13 (2.7%) in general EDs (p < 0.001). How-
ever, when the newer ICRP 103 definition was used, only
13 (2.7%) of all CT brain imaging studies were within
the reference levels, all of which were in the pediatric
ED (Table 4).

Proposal of a local diagnostic reference level
Based on the recommendations of National Council on
Radiation Protection and Measurements (NCRP) Report
172 and ICRP 103, the median CTDIvol and DLP values
for each age group may be defined as the local DRL.
These proposed DRLs from our study are displayed in
Table 5.

Discussion
CT brain studies remain a sensitive and readily available
tool for many diagnostic dilemmas in the ED. CT has
the ability to produce images in a quick, non-invasive
and reliable manner, making it the best imaging option
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Table 1 Patient Demographics

Overall (n = 479) Pediatric ED (n = 379) General EDs (n = 100) p-value

Median Age in Years (Interquartile Range) 7 (3 to 12) 6 (2 to 10) 13 (10 to 15) < 0.001

Gender, n (%) ` 0.426

Male 290 (60.5) 226 (59.6) 64 (64.0)

Diagnosis, n (%) < 0.001

Seizure 149 (31.1) 127 (33.5) 22 (22.0)

Head Injury 147 (30.7) 105 (27.7) 42 (42.0)

Altered Mental Status 44 (9.2) 36 (9.5) 8 (8.0)

Stroke 34 (7.1) 34 (9.0) 0 (0)

Headache, not specified 22 (4.6) 9 (2.4) 13 (13.0)

Meningoencephalitis 21 (4.4) 18 (4.7) 3 (3.0)

Intracranial Neoplasm 11 (2.3) 11 (2.9) 0 (0)

Cardiac Arrest 9 (1.9) 4 (1.1) 5 (5.0)

Syncope 9 (1.9) 5 (1.3) 4 (4.0)

Intracranial Haemorrhage 6 (1.3) 4 (1.1) 2 (2.0)

Ventriculoperitoneal Shunt-related 3 (0.6) 3 (0.8) 0 (0)

Others 24 (5.0) 23 (6.1) 1 (1.0)

Table 2 Parameters of CT Scanners At Pediatric and General EDs

Parameters Pediatric ED General EDs

Tube Potential, kV 100, 120 100,120

Median Tube Current - Exposure Time Product (IQR), mAs

≤ 6 months 148.50 (135.25–184.00) 263.00 (−)

> 6 months to ≤3 years 176.00 (156.00–210.00) 288.00 (257.25–300.00)

> 3 years to ≤6 years 196.00 (181.75–239.00) 294.00 (229.50–336.00)

> 6 years to ≤10 years 244.00 (192.50–260.00) 300.00 (250.00–312.00)

> 10 years 204.00 (187.00–264.00) 320.00 (238.00–360.00)

Median Scan Range (IQR), cm

≤ 6 months 16.32 (15.14–17.36) 12.93 (−)

> 6 months to ≤3 years 18.20 (16.91–19.50) 17.40 (10.89–27.74)

> 3 years to ≤6 years 18.63 (18.00–19.74) 13.41 (11.58–17.24)

> 6 years to ≤10 years 19.17 (18.49–20.32) 17.16 (15.02–18.60)

> 10 years 19.60 (18.78–20.63) 18.49 (16.78–19.39)

Pitch Value 0.55–1.55 0.5–1.55

Rotation Time, seconds 0.28–1.0 0.5–1.0

Collimation, mm

Siemens 128 × 0.6, 192 × 0.6 128 × 0.6, 192 × 0.6

Toshiba 40 × 0.6 40 × 0.6

Reconstruction Technique Iterative Iterative

Section Thickness, mm 3 3
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at the ED over alternative imaging modalities such as
paediatric cranial ultrasound or magnetic resonance im-
aging of the brain. Ultrasound is constrained by the fact
that it can only be performed prior to fontanelle fusion
in neonates or infants and magnetic resonance imaging
requires patients to be absolutely still for a prolonged
duration of which the pediatric population may not be
able to comply with. CT, however, delivers considerably
higher radiation doses than these alternatives. Therefore,
minimizing radiation doses during CT brain scans re-
mains an important quality measure in all hospitals.
We found that the effective doses of radiation for CT

brain studies were higher in the general EDs than the
pediatric ED. By comparing effective doses to the pub-
lished ICRP 60 and 103 definitions, we found that even
in pediatric institutions, less than 50% met the ICRP 60
definitions and less than 5% met the newer ICRP 103
definitions. Therefore, moving forward, we have pro-
posed a local DRL based on the median CTDIvol and
DLP values for each age group to improve the safety and
quality of CT brain studies performed in pediatric pa-
tients at our healthcare network.
The term ‘effective dose’, used by health practitioners

worldwide, is regarded as the most appropriate dose de-
scriptor to quantify and communicate the stochastic
risks associated with diagnostic procedures involving
ionizing radiation [41]. It takes into account the relative
sensitivity of a person’s irradiated organs, translating it
into a quantifiable estimate of an individual’s biologic
detriment (e.g., carcinogenesis) – this is referred to as

‘normalized’ effective dose [35]. In neonates and chil-
dren, an inherently higher sensitivity to the effects of
ionizing radiation can result in doubling of the effective
dose delivered to the irradiated anatomic site (e.g., brain)
compared to an adult [10, 42].
The age-stratified effective doses of CT brain studies

were higher in the younger age groups compared to
older age groups; a finding in line with recent publica-
tions which supports the inverse relationship between
effective dose and age [43, 44]. However, the effective
doses for pediatric CT brain studies performed by gen-
eral EDs were higher, reaching statistical significance in
those aged three and above, adding further evidence to
the literature that non-dedicated pediatric centers ex-
posed patients to higher radiation doses during CT stud-
ies [45–47]. In addition, it is concerning that there is a
wider variation across effective doses in the general EDs
and a higher proportion of studies exceeding the dose
recommendations of ICRP 60. As ICRP 103 conversion
coefficients are deemed to be more accurate for children
of different ages, it is therefore alarming that when
benchmarked against the ICRP 103 effective dose rec-
ommendations, none of the CT brain studies at the gen-
eral EDs was within the reference levels [48].
For CT studies, effective dose is directly proportional

to the quantity of energy a scanner emits, quantified by
CTDIvol and DLP. While DLP values help determine es-
timations of effective dose using ICRP 103 age-based
conversion coefficients, CTDIvol, however, is the CT
index that ‘best represents the average dose at a

Table 3 Comparison of Effective Dose for CT Brain Studies Between Pediatric and General EDs

Age Group Overall (n = 479) Pediatric ED (n = 379) General EDs (n = 100) p-value

Median Effective Dose
(IQR), mSv

n (%) Median Effective Dose
(IQR), mSv

n (%) Median Effective Dose
(IQR), mSv

n (%)

≤6 months 1.84 (1.60–2.65) 22 (4.6) 1.79 (1.59–2.39) 20 (5.3) 2.95 (−) 2 (2.0) 0.052

> 6 months to ≤3
years

1.97 (1.67–2.29) 118
(24.6)

1.97 (1.67–2.26) 112
(29.6)

2.57 (1.76–4.01) 6 (6.0) 0.063

> 3 years to ≤6
years

1.57 (1.42–1.57) 87
(18.2)

1.57 (1.42–1.79) 82
(21.6)

1.93 (1.51–2.28) 5 (5.0) 0.047

> 6 years to ≤10
years

1.48 (1.30–1.76) 88
(18.4)

1.43 (1.27–1.67) 72
(19.0)

1.94 (1.61–2.59) 16
(16.0)

0.002

> 10 years 1.63 (1.38–2.10) 164
(34.2)

1.68 (1.32–1.72) 93
(24.5)

2.03 (1.58–2.88) 71
(71.0)

< 0.001

Table 4 CT Brain Studies with Effective Doses within the Reference Levels Recommended by ICRP 60 and 103

Age Group ICRP 60 ICRP 103

Pediatric ED (n = 379) General EDs (n = 100) Pediatric ED (n = 379) General EDs (n = 100)

≤6 months 15 (4.0) 0 (0) 6 (1.6) 0 (0)

> 6 months to ≤3 years 47 (12.4) 2 (2.0) 3 (0.8) 0 (0)

> 3 years to ≤6 years 53 (14.0) 2 (2.0) 1 (0.3) 0 (0)

> 6 years to ≤10 years 62 (16.4) 8 (8.0) 0 (0) 0 (0)

> 10 years 39 (10.3) 5 (5.0) 3 (0.8) 0 (0)
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particular point within a scan volume’. [49] The CTDIvol
is dependent on several key acquisition parameters such
as tube current and scanning rotation time (mAs), tube
potential, pitch setting and detector configuration, as
well as reconstruction technique and slice thickness; all
ultimately contribute to patient’s effective dose [50, 51].
Differences in acquisition parameters of the CT scanners
at the EDs may account for the lower doses of radiation
at the pediatric ED compared to general EDs. Specific-
ally, general EDs had a higher mAs in all age-groups,
pediatric ED had a lower gantry rotation time of 0.28 s,
and general EDs had a greater proportion of younger
children whose images are acquired at a tube potential
of 120 kV voltage setting.
However, acquisition parameters of the CT scanners

are not the only reasons for the higher doses used for
CT brain studies at the general EDs. While the use of
optimal scanning protocols involving pediatric patients
may lead to lower radiation doses during CT brain stud-
ies, the pediatric protocols are not the default setting at
the general EDs, thereby necessitating a switch by the
radiographer when the study is being performed [52].
Furthermore, radiologists at the general EDs may be less
experienced and familiar with CT studies in pediatric
patients, therefore making modifications to protocols in
place by increasing doses of radiation to decrease image
noise for better diagnostic accuracy [26, 28]. All these
deviations can contribute to the higher radiation doses
for CT brain studies at the general EDs.
Optimal radiation doses should be established by regu-

latory authorities as national DRLs using national survey,
or healthcare facilities as local DRLs using current prac-
tice [39]. However, both national and local DRLs are
lacking in Singapore. In our study, we proposed local
DRLs based on the median CTDIvol and DLP at pediatric
and general EDs. In doing so, we hope to call to atten-
tion the need for better regulation of radiation exposure
from CT studies in pediatric patients. When compared
to European guidelines, the local DRLs were higher, es-
pecially those for general EDs. (Supplementary
Materials).
This study is an initial but critical step towards under-

standing where we currently stand in terms of pediatric

CT dose levels and how it varies across the EDs in our
healthcare network. The processes involved in determin-
ing radiation dose estimates, including local DRLs, have
provided us with an evaluation framework and tools for
optimizing doses for pediatric CT brain studies per-
formed in our EDs. At the same time, they have shown
us the potential challenges of establishing consensual
DRL for pediatric CT studies. The local DRL values in
this review were well below those reported by our
American and European counterparts, which is encour-
aging. However, dose variations found between pediatric
and non-pediatric EDs within our healthcare network
are troubling. Nonetheless, we hope our findings serve
as a stimulus for a concerted nationwide and unified ap-
proach to pediatric CT dose optimisation, involving phy-
sicians, allied health professionals, and patients.
For institutions, we propose having an active approach

to educate and raise awareness among healthcare
workers beyond ED and radiology staff as part of our ef-
forts to reduce radiation doses in pediatric patients. Im-
plementation of quality control measures to ensure
competence when dealing with pediatric patients and
monitoring compliance to departmental pediatric proto-
cols for scanning should be considered, especially in
centers without dedicated pediatric services. Finally, it is
our responsibility to ensure that pediatric CT studies are
clinically indicated, and that their acquisition techniques
and protocols are optimized. Frequent reviews of
pediatric CT protocols to prevent unnecessary radiation
exposure to our younger population from routine day-
to-day medical practice are highly encouraged.

Limitations
This study has several limitations. Firstly, this study was
conducted in a single healthcare network consisting of a
pediatric ED and three general EDs in Singapore. All
four centers are tertiary hospitals and academic centers.
As EDs in other settings may have different practices, a
collaboration involving various institutions from mul-
tiple countries would be able to provide a better repre-
sentation of how radiation doses used for CT studies
differed between pediatric and general EDs. Next, we
only evaluated non contrasted CT brain studies instead
of including all CT studies as the number of CT studies
involving contrast and/or other body regions were per-
formed infrequently, leading to inadequate numbers for
statistical power and valid comparison of radiation doses
used between pediatric and general EDs. We also did
not evaluate the indications for CT and the number of
CT brain studies with positive or clinically important
findings.
In determining the effective dose estimates for

pediatric CT brain, we used scanner-derived parameters,
as well as age- and tube potential-based conversion

Table 5 Proposed Local Diagnostic Reference Level for Pediatric
CT Brain Studies

Age Group Pediatric ED General EDs

CTDIvol DLP CTDIvol DLP

≤6 months 19 309 27 335

> 6 months to ≤3 years 22 405 29 598

> 3 years to ≤6 years 25 448 40 552

> 6 years to ≤10 years 26 494 43 654

> 10 years 29 571 50 827
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coefficients recommended by ICRP 103. CTDIvol pro-
vides estimates of radiation output doses based on simi-
lar attenuating objects and do not take into account
those substantially different in terms of size or shape,
particularly in children where significant differences in
size is often encountered. Other methods including
scanner-specific effective dose estimates and size-specific
dose estimates are available. Consequently, patients in
this review could have been categorized in other ways
such as size (e.g., effective head diameter). Furthermore,
we did not evaluate the quality of images as this would
have improved our understanding of what constitutes
image diagnostic adequacy and acceptability across a
spectrum of pediatric radiation dose metrics. Hence, fu-
ture studies should consider including quantitative and
qualitative evaluations of diagnostic image quality for
completeness. Lastly, we did not study the long term ef-
fects of the higher radiation doses used at the general
EDs on the subsequent development of radiation-
induced cancers.

Conclusions
CT brain remains an important diagnostic imaging tool
that is not easily substituted by alternative imaging mo-
dalities. When performed for appropriate indications
with optimized technical parameters, the value of the in-
formation obtained far exceeds the stochastic risks.
However, as general EDs have a tendency to administer
higher radiation dose during CT brain study compared
to pediatric ED, there must be strategies in place to jus-
tify and optimize the use of CT study by adopting im-
aging protocols with reduced radiation doses based on
national or local standards. This will allow for better
quality management in pediatric CT imaging, so that ra-
diation exposure can be kept “As Low As Reasonably
Achievable” and every pediatric patient can be “Image(d)
Gently” in the ED.
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